
DEFINING    
RANDOMNESS

Christopher P. Porter
Université Paris 7
28 November 2013



A MOTIVATING QUESTION

What does it mean for a sequence of 0s and 1s to be 
random?

There are a number of ways to answer this question.

For instance, we might hold that a sequence is 
random if it is obtained by tossing an fair coin 
(where H = 0 and T = 1).

Alternatively, we might hold that a sequence is 
random if it looks as if it were obtained by tossing a 
fair coin.



AN EXTENDED EXAMPLE

For the moment, let’s restrict our attention to 
sequences of length fifty.

Consider the following sequence S:

It is certainly possible to produce S by tossing a fair 
coin, and thus it would be counted as random in 
the first sense.   

00000 00000 00000 00000 00000 00000 00000 00000 00000 00000



AN EXTENDED EXAMPLE, 2

However, S isn’t the sort of sequence we’d expect 
to produce by tossing a fair coin fifty times. 

Since S doesn’t look as it were produced by the 
tosses of a fair coin,  we probably wouldn’t count 
it as random in the second sense.

But what exactly is wrong with S?



AN EXTENDED EXAMPLE, 3

In the first place, we expect that in tossing a fair coin 
fifty times, H comes up at least once. 
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AN EXTENDED EXAMPLE, 3

In the first place, we expect that in tossing a fair coin 
fifty times, H comes up at least once. 

In fact, about 66% of the time, H should appear 
between 22 and 28 times.
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AN EXTENDED EXAMPLE, 3

In the first place, we expect that in tossing a fair coin 
fifty times, H comes up at least once. 

In fact, about 66% of the time, H should appear 
between 22 and 28 times.

In fact, over 95% of the time, H should appear 
between 18 and 32 times.
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AN EXTENDED EXAMPLE, 3

In the first place, we expect that in tossing a fair coin 
fifty times, H comes up at least once. 

In fact, about 66% of the time, H should appear 
between 22 and 28 times.

In fact, over 95% of the time, H should appear 
between 18 and 32 times.

S should thus disqualified from being counted as 
random on statistical grounds.



“ROUGH” DEFINITION 1

The statistical definition of randomness

A sequence of 0s and 1s of length N is random 
if and only if it satisfies all statistical properties 
that “most” strings of length N satisfy.



A FEW WORRIES

1.  This definition is hopelessly vague.
2.  How can this definition be extended to define 
random infinite sequences?

For every infinite sequence X, the 
property “not being equal to X” 
occurs with probability one, so most 
sequences satisfy this property.

Unless we’re more careful, we will 
have an empty definition of 
randomness for infinite sequences.



AN ALTERNATIVE APPROACH

Alternatively, we might reason as follows:
Most sequences produced by the tosses of a fair 
coin don’t have any easily recognizable patterns.
Moreover, due to this lack of patterns, most 
sequences are in a certain sense difficult to 
describe.
But the sequence S is easy to describe:  repeat 0 
fifty times.

Thus S should not be counted as random.



DESCRIPTIONS?

Here I have a very specific kind of description in 
mind:  I mean descriptions of a sequence that allows 
me to reconstruct the sequence from the description.

We need to be careful about what counts as an
admissible description in this context:

“the sequence of 50 0’s” should count as 
admissible;

“Walt’s favorite string” should not.



EASY TO DESCRIBE?

Once we’ve specified what counts as the admissible
descriptions, we still need to define what is means for
sequence to be “easy to describe.”

Note that “the sequence of 50 0’s” contains 22 symbols.
From a description of length 22, we can reconstruct a 
sequence of 50 symbols.
But here’s another description of S:  

“The first bit is a 0 and the second bit is a 0 and...”
This description has length much greater than 50, 
but it is a very redundant description.



“ROUGH” DEFINITION 2

The incompressibility definition of randomness

A sequence of 0s and 1s of length N is random 
if and only if its shortest admissible description 
has length at least N.



A FEW MORE WORRIES

1.  Like the first definition of randomness, this 
definition as formulated is also quite unclear.

2.  It is also not clear how this definition can be 
extended to define random infinite sequences.

How does one describe an infinite sequence?
There are uncountably many sequences of the 
form 00 11 11 00 00 11 00 11 11 00 ...
These shouldn’t be counted as random, but how 
do we describe each of these sequences?



THE PLAN

Step 1:  Make precise the incompressibility 
definition of randomness.

Kolmogorov complexity

Step 2:  Make precise the statistical definition of 
randomness.

Martin-Löf randomness

Step 3:  Explain how these two definitions relate to 
one another.

The Levin-Schnorr Theorem



KOLMOGOROV
COMPLEXITY



KOLMOGOROV’S 1965 PAPER

In his 1965 paper, “Three approaches to the 
definition of the notion of amount of information,” 
Kolmogorov introduced a measure of complexity 
that is nowadays referred to as Kolmogorov 
complexity.

This definition of complexity is given in terms of 
computable functions, so we’ll have to briefly 
discuss a few basic facts from computability theory.

As we’ll see shortly, random sequences are those 
that have sufficiently high Kolmogorov complexity.



THE NOTION OF A 
COMPUTABLE FUNCTION

Intuitively, a function f :              is computable if 
(1) there is a finite set of instructions (each of 
which is finite) for determining the values of f, 

(2) each value f(n) can be obtained in finitely 
many steps (in accordance with the instructions), 
and

(3) the instructions can be carried out, in 
principle, by a human working with pencil and 
paper (and not making use of any special insight 
or ingenuity).

N ! N



FORMAL DEFINITIONS OF 
COMPUTABLE FUNCTION

For the purposes of today’s talk, I won’t give a 
formal definition of computable function.

However, it is important to emphasize that all 
reasonable definitions of computable number-
theoretic function (such as those given in terms of 
Turing machines) have been shown to be 
equivalent.

The Church-Turing thesis:  The formal definition of 
computable function captures the intuitive notion of 
computable function.



SOME USEFUL FACTS, 1

There are some important facts about computable 
functions that we’ll need in what follows.

1.  There is an effective enumeration of all partial 
computable functions             .

2.  There is a universal partial computable function:

(�i)i2N

�(e, x) ' �e(x)

For each i,     need not be defined on every 
natural number n.

�i

If     is defined on n, we write             .�i �i(n)#



SOME USEFUL FACTS, 2

3.  A set of natural numbers A is computable if there 
is a total computable function     that computes the 
characteristic function of A: 

4.  The halting set                               is not a 
computable set. 

�(n) =

⇢
1 if n 2 A
0 if n /2 A

�

K = {e : �e(e)#}



PLAIN
KOLMOGOROV COMPLEXITY, 1

Hereafter, we will consider partial computable 
functions as maps from        to        (and I’ll refer to 
these functions as machines).

2<! 2<!

Let                             be a machine and let               .M : 2<! ! 2<! ⌧ 2 2<!

Any                such that                     is called an 
M-description of   .   

� 2 2<! M(�)# = ⌧
⌧

Then we define                                                          to 
be the plain Kolmogorov complexity of     relative 
to M.

CM (⌧) = min{|�| : M(�)# = ⌧}
⌧



Let               be an effective enumeration of all 
machines.

We can define a universal machine    
as follows:

PLAIN
KOLMOGOROV COMPLEXITY, 2

CU (⌧) = min{|�| : U(�)# = ⌧}

U : 2<! ! 2<!

(Mi)i2N

U(1i0�) ' Mi(�)

Then is the plain  
Kolmgorov complexity of    . We set                            . ⌧

Why are we justified defining         in terms of one 
fixed universal machine?

C(�) := CU (�)

C(·)



OPTIMALITY AND 
INVARIANCE

The Optimality Theorem:  Let     be a universal 
machine.  Then for any machine M there is some c
such that 

U

C(�)  CM (�) + c

� 2 2<!for every              .

The Invariance Theorem:  Let      and      be universal 
machines.  Then there is some constant
such that

U1 U2
cU1,U2

� 2 2<!for every              .
|CU1(�)� CU2(�)|  cU1,U2



A SIMPLE EXAMPLE

Let                             be the machine such that
                     for every 

M : 2<! ! 2<!

M(�)# = � � 2 2<!.

Then                        for every CM (�) = |�| � 2 2<!.

Thus there is some c such that

for every � 2 2<!.
C(�)  |�|+ c



INCOMPRESSIBLE STRINGS, 1

For a fixed c, let us say that a string     is 
c-compressible if 

�

C(�) � |�|� c
|�| > c

C(�) ⇡ |�|

Thus     is c-incompressible if                           , which
only makes sense if             .

�

�We can define    to be random if                    , but to
be precise, we should require that     be
c-incompressible for some              . 

�
c ⌧ |�|

C(�) < |�|� c.



INCOMPRESSIBLE STRINGS, 2

It’s important to note that for a fixed c and n > c, 
there are many c-incompressible sequences of 
length n.

In fact, there are at least
2n � (2n�c � 1)

c-incompressible sequences of length n.

For example if n = 10 and c = 4, there are at least 961 
c-incompressible sequences of length 10.



EXTENDING TO THE INFINITE?

How might we extend this definition to infinite 
sequences?

One reasonable suggestion is to define               to 
be random if all of its initial segments are 
c-incompressible for some fixed c:

X 2 2!

(8n)C(X�n) � n� c



A VACUOUS DEFINITION

However, Martin-Löf proved the following:

Theorem:  For every sequence X, there are 
infinitely many n such that 
  

C(X�n)  n� log(n).

Thus, for each c, there is no sequence with only 
c-incompressible initial segments.
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y = x

y = x - log(x) 

y = C(X↾n)
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MARTIN-LÖF
RANDOMNESS



MARTIN-LÖF’S 1966 PAPER

Working under the supervision of Kolmogorov, 
Martin-Löf developed a statistical definition of 
randomness for finite and infinite sequences.

Both definitions are given in terms of certain
effective statistical tests.

Nowadays these tests are referred to as
Martin-Löf tests.



MARTIN-LÖF TESTS, 1

Suppose that we want to statistically test whether
a given finite sequence     was produced by the tosses 
of a fair coin. 

�

Thus we subject     to a battery of statistical tests, 
each of which picks out a critical region 
corresponding to some level of significance    .

�

↵

If    occurs in the critical region, we reject the 
hypothesis of randomness at significance level    .
�

↵



MARTIN-LÖF TESTS, 2

How should we statistically test the hypothesis that
a given infinite sequence X was produced by the 
tosses of a fair coin?

Martin-Löf’s idea:  We proceed as in the finite case,
but we test at every level of significance of the form
               .↵ = 2�n

Further, Martin-Löf required that the tests we use be
given by some effective procedure.
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MARTIN-LÖF RANDOMNESS

Let                be a Martin-Löf test.               passes the
test if         

(Un)n2N X 2 2!

X /2
\

i2N
Ui.

X 2 2!Further,                is Martin-Löf random if X passes
every Martin-Löf test.

The development of this definition was considered
to be a significant achievement.

But how does it relate to Kolmogorov complexity?



A PARTIAL RESULT

However, he also proved:

Recall that Martin-Löf proved that for every
            , there are infinitely many n such that

X 2 2!

C(X�n)  n� log(n).

Theorem:  For             , if there is some c such that

for infinitely many n, then X is Martin-Löf 
random. 
  

X 2 2!

C(X�n) � n� c

He was unable to prove the converse. 
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THE LEVIN-
SCHNORR
THEOREM



THE NEXT STEP

To determine the exact relationship between 
Kolmogorov complexity and Martin-Löf randomness,
progress was made by slightly modifying the 
definition of Kolmogorov complexity.

Instead of defining Kolmogorov complexity in terms
of all machines, the key step was to restrict the 
collection to some proper sub-collection.

Both Levin and Schnorr took this approach.



Let               be an effective enumeration of all prefix-
free machines.

We can define a universal prefix-free machine    
                           as before:

PREFIX-FREE MACHINES

U : 2<! ! 2<!

(Mi)i2N

U(1i0�) ' Mi(�)

M : 2<! ! 2<!A machine                             is prefix-free if for every
                  , if            and             , then             . �, ⌧ 2 2<! � � ⌧ M(�)# M(⌧)"

The optimality theorem and the invariance theorem
also hold for universal prefix-free machines.



PREFIX-FREE
KOLMOGOROV COMPLEXITY

Then the prefix-free Kolmogorov complexity of
is defined to be

Now we can define prefix-free Kolmogorov 
complexity:

⌧

Let     be a universal prefix-free machine.U

K(⌧) = min{|�| : U(�)# = ⌧}.



SEVERAL IMPORTANT FACTS

There exists some constant c such that for every
              ,� 2 2<!

K(�)  |�|+ 2 log(|�|) + c.

Further, the collection of               such that              

 
is non-empty.              

X 2 2!

(9c)(8n)K(X�n) � n� c
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THE LEVIN-SCHNORR 
THEOREM

Theorem:  For             ,

if and only if X is Martin-Löf random. 

X 2 2!

(9c)(8n)K(X�n) � n� c



COMPRESSIBLE       ATYPICAL 

Suppose we have a sequence X  such that for every 
c, at least one initial segment of X is c-compressible. 

)

That is, for every c there is some n such that

K(X�n) < n� c.

Then we define a sequence               of subsets of                  
as follows:

(Un)n2N

Uc = {X 2 2! : (9k)[K(X�k)  k � c]}

2!

Key insight:                  is a Martin-Löf test.  (Un)n2N



For             , suppose there is some Martin-Löf test
               such that (Un)n2N

X 2 2!

X 2
\

i2N
Ui.

It is not obvious how to proceed here.

We’d like to show that sequences that are
contained in            can be compressed.

\

i2N
Ui

The problem is that it’s not clear which machine
we should use to compress these sequences.

ATYPICAL       COMPRESSIBLE, 1)



The solution:  We build the machine ourselves!

By the definition               , the finite sequences that 
determine each      must be getting longer and longer. Ui

X 2 Ui

Y 2 Ui

X�k

X�k � Y

ATYPICAL       COMPRESSIBLE, 2)

(Un)n2N

Note that if              , then this is due to some         
being enumerated in the corresponding critical 
region.

Thus, for any              such that                , it follows
that             . 

Y 2 2!



The idea, then, is to define a machine that compresses 
any sequence the initial segments of which appear in 
each of the     ‘s.Ui

ATYPICAL       COMPRESSIBLE, 3)

In fact, for every sequence               , our machine
will compress some initial segment of X by roughly 
i bits. 

X 2 U2i



We appeal to a more general result:

Suppose we can effectively list a sequence of pairs
          , where each pair can be seen as a request.
For the pair           , we are requesting that a 
sequence of length n be mapped to   .

Then as long as our requests satisfy a certain 
technical condition, then we can build a machine that 
meets all of our requests.

ATYPICAL       COMPRESSIBLE, 4)

(n,�)
(n,�)

�



ONE LAST MATTER

X 2 2!What about the sequences              for which there 
is some c such that

for infinitely many n?
C(X�n) � n� c
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ONE LAST MATTER

X 2 2!What about the sequences              for which there 
is some c such that

for infinitely many n?
C(X�n) � n� c

This condition determines a stronger notion of 
randomness:  If we define Martin-Löf randomness
relative to the halting set                               as an 
oracle, we have what is known as 2-randomness. 

K = {e : �e(e)#}



CHARACTERIZING 
2-RANDOMNESS

C(X�n) � n� c

Theorem: (Nies, Stephan, Terwijn; Miller) For             ,     
there is some c such that

for infinitely many n if and only if X is 2-random. 

X 2 2!



ANOTHER
CHARACTERIZATION

Theorem: (Miller) For             , there is some c such 
that

for infinitely many n if and only if X is 2-random. 

X 2 2!

K(X�n) � n+K(n)� c
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Thank you for your attention!


