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Osvald Demuth



Introducing Demuth

I Born in Prague in 1936.

I Graduated in 1959 from Charles University in Prague with
the equivalent of a master’s degree.

I Studied constructive mathematics with Markov from 1959
until 1964, when he defended his doctoral thesis.

I Returned to Charles University, working mostly in
isolation until his death in 1988.
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1. The Markov school of constructive
mathematics



The aim of constructive mathematics

The aim was to find [a] foundation for mathematics that
would be as simple and secure as possible and would be free
from too far reaching idealisations, foundations in which the
concept of effectivity would be the principal.

“Remarks on Constructive Mathematical Analysis”
Demuth, Kučera 1979



Historical motivation for constructive mathematics

[F]rom the historical point of view, the development of
mathematics was substantially influenced by applications of
mathematics where solutions of problems consisted, de facto,
in transformation of particular information coded by words.

To put it shortly, the main subject of CM is the study of
possibilities of algorithmical transformation of coded
information about mathematical objects.

“Remarks on Constructive Mathematical Analysis”
Demuth, Kučera 1979



An unorthodox constructivism? I

It should be noted that we are interested, owing to the
natural connection between concepts of constructive
mathematical analysis and arithmetical predicates, only in
computability relative to jumps of the empty set.

It is known from the results of E.M. Gold and [H.] Putnam
that the ∅(n)-PRFs (1 ≤ n) can be represented on the basis
of recursive functions by means of non-effective limits...



An unorthodox constructivism? II

Without leaving [the] constructive program concerning
effective processes we improve, by the use of relative
computability, our ability to handle effective procedures.
The advantage of the improvement consists in both
substantial simplification and clearness of formulations.

“Remarks on Constructive Mathematical Analysis”
Demuth, Kučera 1979



2. Demuth randomness



The definition of Demuth randomness

Definition
I A Demuth test is a sequence of effectively open classes

(Ui)i∈N such that
(i) λ(Un) ≤ 2−n for every n, and

(ii) there is a function f : N→ N with f ≤wtt ∅′ such that
Un = JWf (n)K for every n.

I Z ∈ 2ω passes the Demuth test (Ui)i∈N if Z /∈ Un for almost
every n.

I Z ∈ 2ω is Demuth random if Z passes every Demuth test.



Properties of Demuth randomness, I

Demuth proved the following facts about Demuth random
(DemR) sequences:

I Every Z ∈ DemR is generalized low (in fact, he proved
Z′ ≡∅′-tt Z).

I Every Z ∈ DemR has hyperimmune degree.



Properties of Demuth randomness, II

I There is a ∅′-computable function g such that for every
Z ∈ DemR and for every partial f ≤T Z,

f (n) ≤ g(n)

for almost every n (and thus ∅′ is uniformly almost
everywhere dominating).

I For every Z ∈ DemR and A ∈ MLR, A ≤T Z implies
A ∈ DemR.



Demuth jump inversion

Theorem (Demuth 1988)
Let B,C ∈ 2ω.

For any E ⊆ 2ω of B-measure zero, there is A /∈ E such that
I A ≤T(B) C and
I C ≤T(B) A.

Corollary
For any C ≥T ∅′ there is some A ∈ DemR such that A′ ≡T C.



Demuth and density

Theorem (Demuth 1988)

For every Z ∈ DemR and every Π0
1 P class containing Z, for every

n ∈ N there exists a k ∈ N such that for all y ≥ k,

λ(P ∩ JZ�yK) ≥ (1− 2−n)λ(JZ�yK).

Corollary
Every Demuth random is a density-one point.

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
Every Oberwolfach random is a density-one point.



2. Randomness and differentiability



“Constructive” real numbers

A real r ∈ [0, 1] is constructive if
I there is a computable sequence of rationals (qn)n∈N

converging to r, and
I a computable function f : N→ N such that for every n and

every k ≥ f (n),
|qf (n) − qk| ≤ 2−n.

Nowadays, we refer to such real numbers as computable.



Genuinely constructive real numbers

Actually, this isn’t the definition Demuth used.

For him, a constructive real number r is given by a pair of
natural numbers (e1, e2), where

I e1 is the index for a computable sequence of rationals
(qn)n∈N converging to r, and

I e2 is the index of the modulus function f (which Demuth
calls the regulator of fundamentality of the sequence
(qn)n∈N).



Markov computable functions

A constructive function f : Rc → Rc is an effective procedure
such that

I for any constructive real number x, if f (x)↓, then f (x) is
constructive, and

I for any constructive x, y, if f (x)↓ and x = y, then f (y)↓ and
f (x) = f (y).



“Standard” computable functions

The standard definition of a computable real-valued function:

I f : R→ R is computable if there is some Turing functional
that maps every Cauchy name for x ∈ dom(f ) to a Cauchy
name of f (x).

How does this relate to Markov computable functions?



“Standard” computable functions vs. Markov
computable functions

standard computable functions⇒ uniformly continuous

Markov computable functions 6⇒ uniformly continuous

However, every uniformly continuous Markov computable
function with a computable modulus of uniform continuity can
be obtained as the restriction of a “standard” computable
real-valued function.



Demuth’s contribution

Demuth was the first to recognize the deep connection between
randomness and differentiability.

Theorem (Demuth 1975)
Every Markov computable function of bounded variation is
“differentiable” at each Martin-Löf random real.



Upper and lower derivatives

For f : R→ R, the slope at a pair a, b ∈ dom(f ) is

Sf (a, b) =
f (a)− f (b)

a− b
.

If z ∈ dom(f ) then

Df (z) = lim sup
h→0

Sf (z, z + h)

and
Df (z) = lim inf

h→0
Sf (z, z + h).

If Df (z) = Df (z) <∞, then f ′(z) exists.



Pseudo-differentiability

How does one take the derivative of a real at a Markov
computable function?

Let IQ = [0, 1] ∩Q.

For a Markov computable f and z ∈ [0, 1] define

D̃f (z) = lim sup
h→0+

{Sf (a, b) : a, b ∈ IQ ∧ a ≤ x ≤ b ∧ 0 < b− a ≤ h}

and

D˜ f (z) = lim inf
h→0

{Sf (a, b) : a, b ∈ IQ ∧ a ≤ x ≤ b ∧ 0 < b− a ≤ h}.



Recent results

Many more results of this flavor have been established recently.
For example:

Theorem (Brattka, Miller, Nies)
1 z ∈ [0, 1] is Martin-Löf random if and only if every Markov

computable function of bounded variation is differentiable at z.

2 z ∈ [0, 1] is Martin-Löf random if and only if every computable
function of bounded variation is differentiable at z.

3 z ∈ [0, 1] is computably random if and only if every
nondecreasing computable function is differentiable at z.



Denjoy random reals and the Denjoy alternative

Definition
z ∈ [0, 1] is Denjoy random if for no Markov computable
function f do we have D˜ f (z) =∞.

Definition
A partial function f :⊆ [0, 1]→ R with dense domain satisfies
the Denjoy alternative at z ∈ [0, 1] if

either f ′(z) exists, or D̃f (z) =∞ and D˜ f (z) = −∞.



Demuth and Denjoy

Theorem (Demuth 1988)
If z ∈ [0, 1] is Denjoy random, then for every computable
f : [0, 1]→ R, the Denjoy alternative holds at f .

Theorem (Demuth 1983)
Let z ∈ [0, 1] be Demuth random. Then the Denjoy alternative holds
at z for every Markov computable function.

Theorem (Demuth 1976)
There is a Markov computable function f such that the Denjoy
alternative fails at some z ∈ MLR.



What we currently know about Denjoy randoms

Theorem (Bienvenu, Hölzl, Miller, Nies)
The following are equivalent for z ∈ [0, 1].

(i) z is Denjoy random.
(ii) z is computably random.

(iii) For every computable f : [0, 1]→ R, the Denjoy alternative
holds at z.



What we currently know about the Denjoy alternative

Theorem (Brattka, Miller, Nies)
Let z ∈ [0, 1] be such that the Denjoy alternative holds at z for every
Markov computable function. Then z is computably random.

Theorem (Bienvenu, Hölzl, Miller, Nies)
Let z ∈ [0, 1] be difference random. Then the Denjoy alternative holds
at z for every Markov computable function.



3. Reducibilities from constructive analysis



Bridging computability theory and constructive
mathematics

Demuth proved a number of results connecting truth-table
reducibility and various reducibilities from constructive
analysis.

To establish these bridge results, Demuth restricted the class of
constructive functions f to those that are constant on (−∞, 0]
and [1,∞).

Demuth called these functions c-functions.



Extending c-functions to classical functions

Let g : Rc → Rc be a c-function.

Then R[g] is the classical function that is the maximal (i.e., has
the largest domain) continuous (on its domain) extension of g.

That is, for each non-computable r ∈ [0, 1], if there is some
a ∈ R such that

lim
x→r−

g(x) = lim
x→r+

g(x) = a,

then we set R[g](r) = a. Otherwise, R[g](r) is undefined.



f -reducibility

By passing from g to R[g], we can define a reducibility on pairs
of reals:

Let g be a c-function. Given α, β ∈ [0, 1], α is f -reducible to β via
g, denoted α ≤f β, if

R[g](β) = α.



A few more reducibilities

Let α, β ∈ [0, 1].

1 α is ∅-ucf reducible to β, denoted α ≤∅-ucf β, if α is
f -reducible to β via a c-function g that is ∅-uniformly
continuous.

2 α is ∅′-ucf reducible to β, denoted α ≤∅′-ucf β if α is
f -reducible to β via a c-function g that is ∅′-uniformly
continuous.

3 α is mf reducible to β, denoted α ≤mf β if α is f -reducible
to β via a c-function g that is monotonically increasing.



Bi-infinite sets

For Demuth’s purposes, reals that have two different binary
representations are problematic.

To rule these out, he introduces the following definitions.

Definition
1 A c.e. set S ⊆ 2<ω is a finite set cover if for every finite set

Z, one of its two binary representations is covered by JSK.

2 z ∈ [0, 1] is strongly bi-infinite if z is bi-infinite and there is
some finite set cover S such that z /∈ JSK.

3 z ∈ [0, 1] is weakly bi-infinite if z is bi-infinite but not
strongly bi-infinite.



tt-reducibility and ∅-ucf -reducibility

Theorem (Demuth 1988)

1 For any ∅-uniformly continuous c-function f : [0, 1]→ [0, 1], for
any A,B ∈ 2ω such that B is strongly bi-infinite,

B ≤∅-ucf A via f if and only if B ≤tt A.

2 For any tt-functional Φ, there is a ∅-uniformly continuous
c-function f : [0, 1]→ [0, 1] such that for any A,B ∈ 2ω such
that A is strongly bi-infinite and B is bi-infinite,

B ≤∅-ucf A via f if and only if B ≤tt A.



∅′-tt-reducibility and ∅′-ucf -reducibility

Theorem (Demuth 1988)

1 For any ∅′-uniformly continuous c-function f : [0, 1]→ [0, 1],
for any A,B ∈ 2ω such that B is strongly bi-infinite relative to ∅′,

B ≤∅′-ucf A via f if and only if B ≤∅′-tt A.

2 For any tt-functional Φ, there is a ∅-uniformly continuous
c-function f : [0, 1]→ [0, 1] such that for any A,B ∈ 2ω such
that A is strongly bi-infinite relative to ∅′ and B is bi-infinite,

B ≤∅′-ucf A via f if and only if B ≤∅′-tt A.



Why care about ≤∅′-ucf?

Theorem (Demuth)
Let f be a c-function. Then the following are equivalent.

1 f is classically uniformly continuous.

2 f is ∅′-uniformly continuous.

3 R[f ] is defined at all ∆0
3 reals.

4 R[f ] is defined on all reals.



tt-reducibility and mf -reducibility

Theorem (Demuth 1988)
Let f be a non-decreasing c-function such that f (0) = 0 and f (1) = 1.
Then the following are equivalent.

1 For any A,B ∈ 2ω,

B ≤tt A implies B ≤mf A via f .

2 There is a computable g : Q2 → Q2 such that for every
a ∈ Q2 ∩ [0, 1],

f (g(a)) = a.



4. tt-reducibility, randomness, and
semigenericity



tt-reductions and randomness

Theorem (Demuth 1988)
If B is non-computable and tt-reducible to A ∈ MLR, then there is
some C ∈ MLR such that

B ≤tt C ≤T B.

Recent proofs of this result are given in terms of computable
measures.

Demuth’s proof makes use of the distribution function of the
measure induced by the initial tt-functional, which he
considers in terms of mf -reducibility.



C.e. random sets

Theorem (Demuth 1987)
There is a tt-degree containing both a c.e. set and a Martin-Löf
random set.

Corollary
There is some c.e. set S ∈ 2ω that is Martin-Löf random with respect
to some computable measure.



Semigenericity

Definition
Z ∈ 2ω is semigeneric if for every Π0

1 class P such that Z ∈ P ,
there is some computable C ∈ P .

Some facts about semigenericity:
I Semigenerics are closed downwards under ≤tt.
I Every weakly 1-generic is semigeneric.
I All hyperimmune and all co-hyperimmune sets are

semigeneric.



Semigenericity and randomness

In general, the following does not hold:

If B is non-computable and tt-reducible to A ∈ MLR, then there
is some C ∈ MLR such that

B ≤tt C ≤wtt B.

Theorem (Bienvenu, Porter)
There is some A ∈ MLR and a tt-functional Φ such that Φ(A) is
non-computable and cannot wtt-compute any Martin-Löf random.

Remarkably, Φ(A) from this theorem is semigeneric.



Random and semigeneric hyperimmune-free degrees

No semigeneric can tt-compute a Martin-Löf random.

Thus, a semigeneric hyperimmune-free degree contains no
Martin-Löf randoms, and a Martin-Löf random
hyperimmune-free degree contains no semigenerics.

Demuth also showed there are hyperimmune-free degrees that
are neither Martin-Löf random nor semigeneric (consider the
degree of A⊕ B for A ∈ MLR and HIF and B semigeneric and
HIF).



Randomness, semigenericity, and Denjoy randoms

Theorem (Demuth 1990)

1 Every non-MLR Denjoy random real is high.

2 Every high degree computes a semigeneric Denjoy random real.

3 There is a minimal Turing degree containing a semigeneric
Denjoy random real.

4 No non-MLR X tt-below some Y ∈ MLR can be a Denjoy
random real.

5 Every semigeneric Denjoy random real is tt-reducible to a
Denjoy set that is neither semigeneric nor Martin-Löf random.



For more details...

“Demuth’s Path to Algorithmic Randomness” by André Nies
and Antonı́n Kučera is a fairly thorough discussion of
Demuth’s work relating randomness and analysis.

An extended version of “Demuth’s Path”, including
I some additional material on Demuth randomness

discussed in this talk,
I the reducibilities from constructive analysis,
I interactions between tt-reducibility, randomness, and

semigenericity,
I and a bit of Demuth’s views on constructive mathematics,

will be published in the Bulletin of Symbolic Logic in the near
future.



Thank you!


