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Introduction

According to the Levin-Schnorr theorem, a sequence X ∈ 2ω is
Martin-Löf random if and only if X has sufficiently high initial
segment complexity.

The goal of the talk today is to discuss some related results on the
growth rate of the initial segment complexity of sequences that are
random with respect to a computable measure on 2ω.

I will focus (for the most part) on computable, continuous
measures.



Computable measures on 2ω

For σ ∈ 2<ω, let JσK = {X ∈ 2ω : σ ≺ X}.

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on we will write µ(σ) instead of µ(JσK).



Martin-Löf randomness with respect to a computable
measure

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a sequence (Ui )i∈ω of uniformly
effectively open subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I X ∈ 2ω passes a µ-Martin-Löf test (Ui )i∈ω if X /∈ ⋂
i∈ω Ui .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.

We will say that X is proper if X ∈ MLRµ for some computable
measure µ on 2ω.



Kolmogorov complexity

Let U : 2<ω → 2<ω be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ)↓ = σ}



The Levin-Schnorr Theorem

Theorem (Levin, Schnorr)

X ∈ 2ω is Martin-Löf random if and only if

∀n K (X �n) ≥ n − O(1).

More generally, we have the following:

Theorem
Let µ be a computable measure. X ∈ 2ω is µ-Martin-Löf random if
and only if

∀n K (X �n) ≥ − log(µ(X �n))− O(1).



Atomic Measures and Continuous Measures

A measure µ on 2ω is atomic if there is some A ∈ 2ω such that
µ({A}) > 0.

A is called an atom of µ.

For an atomic measure µ, let Atomsµ be the collection of atoms of
µ.

If µ is not atomic, then µ is continuous.

A few facts:

I If A is the atom of a computable measure, then A ∈ MLRµ.

I If A is the atom of a computable measure, then A is
computable.



A priori complexity

Definition

I A semi-measure is a function ρ : 2<ω → [0, 1] satisfying

(i) ρ(ε) = 1 and
(ii) ρ(σ) ≥ ρ(σ0) + ρ(σ1).

I A semi-measure ρ is left-c.e. if ρ is computably approximable
from below.

Fact: There exists a universal left-c.e. semi-measure M.

We define the a priori complexity of σ ∈ 2<ω to be

KA(σ) := − logM(σ).



Complex and strongly complex sequences

Recall that an order function h : ω → ω is an unbounded,
non-decreasing function.

Definition
Let X ∈ 2ω.

I X is complex if there is a computable order function
h : ω → ω such that

∀n K (X �n) ≥ h(n).

I X is strongly complex if there is a computable order function
g : ω → ω such that

∀n KA(X �n) ≥ g(n).

Proposition

X is complex if and only if X is strongly complex.



Our main question

Given that proper sequences must have sufficiently high initial
segment complexity, it is reasonable to ask:

What is the relationship between the collection of proper sequences
and the collection of complex sequences?

I Not every proper sequence is complex.

I Not every complex sequence is proper.



A sufficient condition for complexity

Theorem (Hölzl, Merkle, Porter)

If X ∈ 2ω is Martin-Löf random with respect to a computable,
continuous measure µ, then X is complex.

This follows from the following two results.

Lemma
Let µ be a computable, continuous measure and let X ∈ MLRµ.
Then there is some Martin-Löf random Y ≤tt X .

Lemma
If X is complex and X ≤wtt Y , then Y is complex.



What about the converse?

As stated earlier, the converse of the previous theorem doesn’t
hold: there are complex sequences that are not proper.

However, we do have a partial converse.

Theorem (Hölzl, Merkle, Porter)

Let X ∈ 2ω be proper. If X is complex, then X ∈ MLRµ for some
computable, continuous measure µ.



A useful lemma

Lemma
Suppose that

I µ is a computable measure,

I X ∈ MLRµ is non-computable,

I P is a Π0
1 class with no computable members, and

I X ∈ P.

Then there is some computable, continuous measure ν such that
X ∈ MLRν .
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Establishing the partial converse

Theorem
Let X ∈ 2ω be proper. If X is complex, then X ∈ MLRµ for some
computable, continuous measure µ.

To prove this theorem, let h be the computable order function that
witnesses that X is complex.

Then we apply the previous lemma to the Π0
1 class

{A ∈ 2ω : K (A�n) ≥ h(n)}.



Connection to semigenericity

Definition
X ∈ 2ω is semigeneric if for every Π0

1 class P with X ∈ P, P
contains some computable member.

Theorem (Hölzl, Merkle, Porter)

Let X ∈ 2ω be proper. The following are equivalent:

1. X ∈ MLRµ for some computable, continuous µ.

2. X is complex.

3. X is not semigeneric.

4. X is hyperavoidable.

5. X is avoidable.



A follow-up result

Definition
Let µ be a continuous measure. Then the granularity function of
µ, denoted gµ, is the order function mapping n to the least ` such
that µ(σ) < 2−n for every σ of length `.

Theorem (Hölzl, Merkle, Porter)

Let µ be a computable, continuous measure and let X ∈ MLRµ.
Then we have

∀n KA(X �n) ≥ g−1µ (n)− O(1).

I There is a computable, continuous measure µ such that the
granularity function gµ of µ is not computable.

I For every computable, continuous measure µ, there is a
computable order function f : ω → ω such that

|f (n)− gµ(n)−1| ≤ O(1).



A question about uniformity

Question
If we have a computable, atomic measure µ such that

∀X ∈ 2ω (X ∈ MLRµ \ Atomsµ ⇒ X is complex),

is there a computable, continuous measure ν such that

MLRµ \ Atomsµ ⊆ MLRν?



Theorem (Hölzl, Merkle, Porter)

There is a computable, atomic measure µ such that

I every X ∈ MLRµ \ Atomsµ is complex but

I there is no computable, continuous measure ν such that
MLRµ \ Atomsµ ⊆ MLRν .
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Let JσiK be the i th neighborhood.

One can verify that

I if φi is partial, then JσiK ∩MLRµ ⊆ Atomsµ;

I if φi is total, then JσiK ∩ Atomsµ = ∅ and every
X ∈ MLRµ ∩ JσiK is complex.

Lastly, if there is some computable, continuous ν such that
MLRµ \ Atomsµ ⊆ MLRν , then there is a computable order f = φi
such that for every X ∈ MLRµ \ Atomsµ,

KA(X �n) ≥ f −1(n)− O(1)

for every n, which yields a contradiction.



Thank you!


