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A motivating question

Let P ⊆ 2ω be a Π0
1 class, i.e., an effectively closed subset of 2ω.

Q: How difficult is it to produce a member of P?

To give a reasonable answer to this question, we need to specify:

(i) What methods of producing sequences are under
consideration?

(ii) What measure of difficulty are we using?

Of course, once we settle (i) and (ii), the answer to our original
question also depends on the class P.



Our approach

methods of Turing functionals
producing  equipped with
sequences random oracles

measures of  negligibility
difficulty and depth
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1. Some background on randomness



Martin-Löf randomness

Definition

I A Martin-Löf test is a uniform sequence (Ui )i∈ω of Σ0
1 (i.e.

effectively open) subsets of 2ω such that for each i ,

λ(Ui ) ≤ 2−i .

I A sequence X ∈ 2ω passes the Martin-Löf test (Ui )i∈ω if
X /∈

⋂
i Ui .

I X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



Computable measures

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on we will write µ(σ) instead of µ(JσK).



Randomness with respect to computable measures

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a uniform sequence (Ui )i∈ω of Σ0
1

subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.



Stephan’s dichotomy theorem

Recall that X ∈ 2ω has PA degree if X computes a consistent
completion of Peano arithmetic.

In 2002, Frank Stephan proved the following:

Theorem (Stephan)

If a Martin-Löf random has PA degree, it is already Turing
complete (i.e., A ≥T ∅′).



Difference randomness

Another definition of algorithmic randomness that will be useful for
us is known as difference randomness.

Definition

I A difference test is a uniform sequence ((Ui ,Vi ))i∈ω of pairs
of Σ0

1 classes such that for each i ,

λ(Ui \ Vi ) ≤ 2−i .

I A sequence X ∈ 2ω passes the difference test ((Ui ,Vi ))i∈ω if
X /∈

⋂
i (Ui \ Vi ).

I X ∈ 2ω is difference random if X passes every difference test.



Difference randomness and Stephan’s theorem

The following theorem is quite surprising:

Theorem (Franklin, Ng)

Let A be Martin-Löf random. Then A is difference random if and
only if A 6≥T ∅′.

Combining this with Stephan’s theorem yields:

Corollary

Let A be Martin-Löf random. Then A is difference random if and
only if A does not have PA degree.



2. Semi-measures, negligibility, and depth



Left-c.e. semi-measures

A semi-measure ρ : 2<ω → [0, 1] satisfies

I ρ(∅) = 1 and

I ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

We will be particularly interested in left-c.e. semi-measures.

A semi-measure ρ is left-c.e. if each value ρ(σ) is the limit of a
non-decreasing computable sequence of rationals, uniformly in σ.



Induced semi-measures

Recall: A Turing functional Φ : 2ω → 2ω is given by a c.e. set of
pairs of strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ Φ and σ � σ′,
then τ � τ ′ or τ ′ � τ .

For σ ∈ 2<ω, we define Φ−1(σ) := {X ∈ 2ω : ∃n (X �n, σ) ∈ Φ}.

Proposition

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ, there is a Turing functional
Φ such that ρ = λΦ.



The universal semi-measure

Levin proved the existence of a universal left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e.
semi-measure ρ, there is some c ∈ ω such that

ρ(σ) ≤ c ·M(σ)

for every σ ∈ 2<ω.

Universal semi-measures are induced by universal Turing
functionals.

For example, the functional Φ defined by

Φ(1e0X ) = Φe(X )

is universal (where (Φe)e∈ω is an effective listing of all Turing
functionals.



The measure derived from a semi-measure

If ρ is a semi-measure, we can define

ρ(σ) := infn
∑

τ�σ & |τ |=n

ρ(τ).

One can verify that ρ is the largest measure such that ρ ≤ ρ (but
it is not a probability measure in general).

Proposition

If ρ is a left-c.e. semi-measure induced by a Turing functional Φ,
then

ρ(σ) = λ({X ∈ 2ω : X ∈ Φ−1(σ) & Φ(X ) is total}).



Negligible classes

Let M be the universal left-c.e. semi-measure.

Then M can be seen as a universal measure (universal for all
computable measures, as well as the measures derived from
left-c.e. semi-measures).

Definition
S ⊆ 2ω is negligible if M(S) = 0.

We are particularly interested here in negligible Π0
1 classes.



The intuition behind negligibility

Let P be a negligible Π0
1 class.

M(P) = 0 means that the probability of producing some member
of P by means of any Turing functional equipped with any
sufficiently random oracle is 0.

To see this, note that

M(P) = 0 if and only if λ
(⋃
i∈ω

Φ−1
i (P)

)
= 0.

In particular, for each Φi , λ({X ∈ MLR : Φi (X ) ∈ P}) = 0.



Deep classes: the idea

We want a property stronger than negligibility for Π0
1 classes.

Instead of considering how difficult it is to produce a path through
a Π0

1 class P, we consider how difficult it is to produce an initial
segment of some path through P, level by level.

Deep classes are the “most difficult” of Π0
1 classes in this respect.



A few more definitions

Let P ⊆ 2ω be a Π0
1 class.

Let T ext ⊆ 2<ω be the set of extendible nodes of P,

T ext = {σ ∈ 2<ω : JσK ∩ P 6= ∅}.

Thus T ext is the canonical co-c.e. tree such that P = [T ext ] (the
set of infinite paths through T ext).

For each n ∈ ω, T ext
n consists of all strings in T ext of length n.

(I will write T instead of T ext hereafter.)



Deep classes: the definition

Let P be a Π0
1 class, and let T be the canonical co-c.e. tree

corresponding to P.

P is a deep class if there is some computable, non-decreasing,
unbounded function h : ω → ω such that

M(Tn) ≤ 2−h(n),

where M(Tn) =
∑

σ∈Tn
M(σ).

That is, the probability of producing some initial segment of a path
through P is effectively bounded above.



3. Basic results on negligible and deep classes



Members of negligible classes

A few observations:

I If a Π0
1 class contains a computable member, clearly it cannot

be negligible.

I Moreover, if a Π0
1 class contains a Martin-Löf random

member, it cannot be negligible, since any Π0
1 class with a

random member must have positive Lebesgue measure.

In fact, the following holds.

Proposition

Let P be a negligible Π0
1 class. Then for every computable measure

µ, P contains no X ∈ MLRµ.



Does the converse hold?

Suppose that P is a Π0
1 class such that P ∩MLRµ = ∅ for every

computable measure µ.

Does it follow that P is negligible? No.

Theorem (Bienvenu, Porter, Taveneaux)

There is a non-negligible Π0
1 class P such that P ∩MLRµ = ∅ for

every computable measure µ.

Idea: Downey, Greenberg, and Miller construct a non-negligible,
perfect thin Π0

1 class. Extending a result of Simpson’s, we show
that every perfect thin class has µ-measure 0 for every computable
measure µ.



Depth vs. negligibility

It’s clear that every deep class is negligible. Is every negligible class
deep? Again, no.

Theorem (Bienvenu, Porter, Taveneaux)

There is a negligible class P that is not deep.

Idea: Define a co-c.e. tree T and a left-c.e. semi-measure ρ such
that

(i) M(Tf (n)) ≤ 2−n for some fast-growing f : ω → ω (to ensure
negligibility), and

(ii) ρ(Tf (n)) ≥ 2−h(n) for some computable order h (to ensure
non-depth).

We use a finite injury argument to carry this out.



Why use the co-c.e. tree in the definition of depth?

For every Π0
1 class P there is a computable tree T ⊆ 2<ω such

that P = [T ].

Why can’t we use this computable tree T in the definition of
depth?

In general, T will contain non-extendible nodes, so even if we can
compute some element in Tn, we still may fail to compute an
initial segment of a member of P.

Can we give a better reason to restrict our attention to the
canonical co-c.e. tree?



Vindicating the definition, 1

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h
such that M(Tn) ≤ 2−h(n) for every n ∈ ω.

Proof.
Suppose M(Tn) ≤ 2−h(n) for some computable order h.

Case 1: T has only finitely many non-extendible nodes.

Then the leftmost path X of T is computable (since T is
computable).

It follows that δX , the Dirac measure on X , is computable.

Thus there is some c such that M(Tn) ≥ 2−cδX (Tn) = 2−c ,
contradicting our assumption.



Vindicating the definition, 2

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes (σi )i∈ω and a
computable function f : ω → ω such that

I f is strictly increasing, and

I |σi | = f (i) for every i .

We define a semi-measure ρ such that ρ(σn) = 2−K(n) for every n
(consistently extending ρ to initial segments of each σn), where
K (n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that
M(Tf (n)) ≥ 2−cρ(Tf (n)) ≥ 2−K(n)−c .

But then by our assumption, 2−K(n)−c ≤ 2−h(f (n)), and hence
h(f (n)) ≤ K (n) + c .

This contradicts the fact that there is no computable lower bound
for K .



Randoms computing members of deep classes

Which random sequences can compute some member of a deep
class?

Note that if X has PA degree and hence can compute a member of
every deep class.

Thus, by Stephan’s dichotomy theorem, if X ∈ MLR and X ≥T ∅′,
X computes some member of a deep class.

But this is the best we can do.

Theorem (Bienvenu, Porter, Taveneaux)

No difference random sequence can compute a member of a deep
class.



4. Examples of deep classes



Consistent completions of Peano arithmetic

The following is implicit in work of Levin and Stephan.

Theorem
The Π0

1 class of consistent completions of PA is a deep class.

Equivalently, we can consider the class P of total extensions of a
universal partial computable {0, 1}-valued function.

Let u(〈e, x〉) = φe(x), where (φe)e∈ω is an effective enumeration
of all partial computable {0, 1}-valued functions.

We will define a partial computable {0, 1}-valued function φe
(where we know e in advance by the recursion theorem), and this
will allow us to show that P is deep.



The proof idea, 1

Since we are defining φe , we have control of the values u(〈e, x〉)
for every x ∈ ω.

Let (Ik)k∈ω be an effective collection of intervals forming a
partition of ω, where we have control of 2k+1 values of u inside of
Ik for each k ∈ ω.

Step 1: For each k , we consider the sets

Ek,s = {σ ∈ 2<ω : σ�Ik extends us�Ik},

and wait for a stage s such that

M(Ek,s) ≥ 2−k .



The proof idea, 2

Step 2: Pick some y ∈ Ik on which we have yet to define u.

Consider the sets

E 0
k,s(y) = {σ ∈ Ek,s : σ(y) = 0}

and
E 1
k,s(y) = {σ ∈ Ek,s : σ(y) = 1}.

Then M(E i
k,s(y)) ≥ 2−(k+1) for i = 0 or 1 (or both).

If this holds for i = 0, we set u(y) = 1; otherwise we set u(y) = 0.



The proof idea, 3

We repeat the process, going back to Step 1.

We can repeat the process at most 2k+1 times (since we have
enough values to work with in Ik).

Eventually, we will get stuck at Step 1.

Setting f (k) = max(Ik), we will have

M({σ : σ�f (k) extends u}) ≤ 2−k .

That is,
M(Tf (k)) ≤ 2−k .



Shift-complex sequences

For δ ∈ (0, 1) and c ∈ ω, we say that X ∈ 2ω is (δ, c)-shift
complex if

K (τ) ≥ δ|τ | − c

for every subword τ of X .

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter, Taveneaux)

For every δ ∈ (0, 1) and c ∈ ω, the (δ, c)-shift complex sequences
form a deep class.



DNRh functions

Let h be a computable order.

f is a DNRh function if

I f is total,

I f (e) 6= φe(e) for every e, and

I f (e) < h(e) for every e.

Theorem (Bienvenu, Porter, Taveneaux)

DNRh is a deep class if and only if
∑∞

n=0
1

h(n) =∞.


