Deep Π_1^0 Classes

Christopher P. Porter Université Paris 7 LIAFA

Joint work with Laurent Bienvenu and Antoine Taveneaux

Seminar Theoretische Informatik und Mathematische Logik Universität der Bundeswehr München 7 August 2013

A motivating question

Let $\mathcal{P} \subseteq 2^{\omega}$ be a Π_1^0 class, i.e., an effectively closed subset of 2^{ω} .

 \mathcal{Q} : How difficult is it to produce a member of \mathcal{P} ?

To give a reasonable answer to this question, we need to specify:

- (i) What methods of producing sequences are under consideration?
- (ii) What measure of difficulty are we using?

Of course, once we settle (i) and (ii), the answer to our original question also depends on the class \mathcal{P} .

Our approach

methods of	
producing	\rightsquigarrow
sequences	

Turing functionals equipped with random oracles

measures of~→negligibilitydifficultyand depth

Outline of the talk

- $1. \ \ \text{Some background on randomness}$
- 2. Semi-measures, negligibility, and depth
- 3. Basic results on negligible and deep classes
- 4. Examples of deep classes

1. Some background on randomness

Martin-Löf randomness

Definition

A Martin-Löf test is a uniform sequence (U_i)_{i∈ω} of Σ₁⁰ (i.e. effectively open) subsets of 2^ω such that for each i,

$$\lambda(\mathcal{U}_i) \leq 2^{-i}.$$

- A sequence X ∈ 2^ω passes the Martin-Löf test (U_i)_{i∈ω} if X ∉ ∩_i U_i.
- X ∈ 2^ω is Martin-Löf random, denoted X ∈ MLR, if X passes every Martin-Löf test.

Computable measures

Definition

A measure μ on 2^{ω} is *computable* if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is computable as a real-valued function.

In other words, μ is computable if there is a computable function $\hat{\mu}:2^{<\omega}\times\omega\to\mathbb{Q}_2$ such that

$$|\mu(\llbracket \sigma \rrbracket) - \hat{\mu}(\sigma, i)| \le 2^{-i}$$

for every $\sigma \in 2^{<\omega}$ and $i \in \omega$.

From now on we will write $\mu(\sigma)$ instead of $\mu(\llbracket \sigma \rrbracket)$.

Randomness with respect to computable measures

Definition

Let μ be a computable measure.

A μ-Martin-Löf test is a uniform sequence (U_i)_{i∈ω} of Σ⁰₁ subsets of 2^ω such that for each i,

$$\mu(\mathcal{U}_i) \leq 2^{-i}.$$

X ∈ 2^ω is μ-Martin-Löf random, denoted X ∈ MLR_μ, if X passes every μ-Martin-Löf test.

Recall that $X \in 2^{\omega}$ has *PA degree* if X computes a consistent completion of Peano arithmetic.

In 2002, Frank Stephan proved the following:

Theorem (Stephan)

If a Martin-Löf random has PA degree, it is already Turing complete (i.e., $A \ge_T \emptyset'$).

Difference randomness

Another definition of algorithmic randomness that will be useful for us is known as *difference randomness*.

Definition

A difference test is a uniform sequence ((U_i, V_i))_{i∈ω} of pairs of Σ⁰₁ classes such that for each i,

$$\lambda(\mathcal{U}_i \setminus \mathcal{V}_i) \leq 2^{-i}.$$

- A sequence $X \in 2^{\omega}$ passes the difference test $((\mathcal{U}_i, \mathcal{V}_i))_{i \in \omega}$ if $X \notin \bigcap_i (\mathcal{U}_i \setminus \mathcal{V}_i)$.
- $X \in 2^{\omega}$ is *difference random* if X passes every difference test.

Difference randomness and Stephan's theorem

The following theorem is quite surprising:

Theorem (Franklin, Ng)

Let A be Martin-Löf random. Then A is difference random if and only if $A \geq_T \emptyset'$.

Combining this with Stephan's theorem yields:

Corollary

Let A be Martin-Löf random. Then A is difference random if and only if A does not have PA degree.

2. Semi-measures, negligibility, and depth

Left-c.e. semi-measures

A semi-measure $\rho: 2^{<\omega} \rightarrow [0,1]$ satisfies

•
$$\rho(\varnothing) = 1$$
 and

•
$$ho(\sigma) \geq
ho(\sigma 0) +
ho(\sigma 1)$$
 for every $\sigma \in 2^{<\omega}$.

We will be particularly interested in *left-c.e.* semi-measures.

A semi-measure ρ is left-c.e. if each value $\rho(\sigma)$ is the limit of a non-decreasing computable sequence of rationals, uniformly in σ .

Induced semi-measures

Recall: A *Turing functional* $\Phi : 2^{\omega} \to 2^{\omega}$ is given by a c.e. set of pairs of strings (σ, τ) such that if $(\sigma, \tau), (\sigma', \tau') \in \Phi$ and $\sigma \leq \sigma'$, then $\tau \leq \tau'$ or $\tau' \leq \tau$.

For $\sigma \in 2^{<\omega}$, we define $\Phi^{-1}(\sigma) := \{X \in 2^{\omega} : \exists n \ (X \upharpoonright n, \sigma) \in \Phi\}.$ Proposition

(i) If Φ is a Turing functional, then λ_{Φ} , defined by

$$\lambda_{\Phi}(\sigma) = \lambda(\Phi^{-1}(\sigma))$$

for every $\sigma \in 2^{<\omega}$, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ , there is a Turing functional Φ such that $\rho = \lambda_{\Phi}$.

The universal semi-measure

Levin proved the existence of a *universal* left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e. semi-measure ρ , there is some $c \in \omega$ such that

$$\rho(\sigma) \le c \cdot M(\sigma)$$

for every $\sigma \in 2^{<\omega}$.

Universal semi-measures are induced by universal Turing functionals.

For example, the functional Φ defined by

$$\Phi(1^e 0X) = \Phi_e(X)$$

is universal (where $(\Phi_e)_{e \in \omega}$ is an effective listing of all Turing functionals.

The measure derived from a semi-measure

If ρ is a semi-measure, we can define

$$\overline{\rho}(\sigma) := \inf_{n} \sum_{\tau \succeq \sigma \& |\tau| = n} \rho(\tau).$$

One can verify that $\overline{\rho}$ is the largest measure such that $\overline{\rho} \leq \rho$ (but it is not a probability measure in general).

Proposition

If ρ is a left-c.e. semi-measure induced by a Turing functional $\Phi,$ then

$$\overline{\rho}(\sigma) = \lambda(\{X \in 2^{\omega} : X \in \Phi^{-1}(\sigma) \And \Phi(X) \text{ is total}\}).$$

Negligible classes

Let M be the universal left-c.e. semi-measure.

Then \overline{M} can be seen as a universal measure (universal for all computable measures, as well as the measures derived from left-c.e. semi-measures).

Definition $S \subseteq 2^{\omega}$ is *negligible* if $\overline{M}(S) = 0$.

We are particularly interested here in negligible Π_1^0 classes.

The intuition behind negligibility

Let \mathcal{P} be a negligible Π_1^0 class.

 $\overline{M}(\mathcal{P}) = 0$ means that the probability of producing some member of \mathcal{P} by means of any Turing functional equipped with any sufficiently random oracle is 0.

To see this, note that

$$\overline{M}(\mathcal{P}) = 0$$
 if and only if $\lambda \Big(\bigcup_{i \in \omega} \Phi_i^{-1}(\mathcal{P}) \Big) = 0.$

In particular, for each Φ_i , $\lambda(\{X \in MLR : \Phi_i(X) \in \mathcal{P}\}) = 0$.

We want a property stronger than negligibility for Π_1^0 classes.

Instead of considering how difficult it is to produce a path through a Π_1^0 class \mathcal{P} , we consider how difficult it is to produce an *initial* segment of some path through \mathcal{P} , level by level.

Deep classes are the "most difficult" of Π_1^0 classes in this respect.

A few more definitions

Let $\mathcal{P} \subseteq 2^{\omega}$ be a Π_1^0 class.

Let $T^{ext} \subseteq 2^{<\omega}$ be the set of extendible nodes of \mathcal{P} ,

$$T^{ext} = \{ \sigma \in 2^{<\omega} : \llbracket \sigma \rrbracket \cap \mathcal{P} \neq \emptyset \}.$$

Thus T^{ext} is the canonical co-c.e. tree such that $\mathcal{P} = [T^{ext}]$ (the set of infinite paths through T^{ext}).

For each $n \in \omega$, T_n^{ext} consists of all strings in T^{ext} of length n.

(I will write T instead of T^{ext} hereafter.)

Deep classes: the definition

Let \mathcal{P} be a Π_1^0 class, and let T be the canonical co-c.e. tree corresponding to \mathcal{P} .

 $\mathcal P$ is a *deep class* if there is some computable, non-decreasing, unbounded function $h:\omega\to\omega$ such that

$$M(T_n) \leq 2^{-h(n)},$$

where $M(T_n) = \sum_{\sigma \in T_n} M(\sigma)$.

That is, the probability of producing some initial segment of a path through \mathcal{P} is effectively bounded above.

3. Basic results on negligible and deep classes

Members of negligible classes

A few observations:

- If a Π₁⁰ class contains a computable member, clearly it cannot be negligible.
- Moreover, if a Π⁰₁ class contains a Martin-Löf random member, it cannot be negligible, since any Π⁰₁ class with a random member must have positive Lebesgue measure.

In fact, the following holds.

Proposition

Let \mathcal{P} be a negligible Π_1^0 class. Then for every computable measure μ , \mathcal{P} contains no $X \in MLR_{\mu}$.

Does the converse hold?

Suppose that \mathcal{P} is a Π_1^0 class such that $\mathcal{P} \cap MLR_\mu = \emptyset$ for every computable measure μ .

Does it follow that \mathcal{P} is negligible? No.

Theorem (Bienvenu, Porter, Taveneaux) There is a non-negligible Π_1^0 class \mathcal{P} such that $\mathcal{P} \cap MLR_{\mu} = \emptyset$ for every computable measure μ .

Idea: Downey, Greenberg, and Miller construct a non-negligible, perfect thin Π_1^0 class. Extending a result of Simpson's, we show that every perfect thin class has μ -measure 0 for every computable measure μ .

Depth vs. negligibility

It's clear that every deep class is negligible. Is every negligible class deep? Again, no.

Theorem (Bienvenu, Porter, Taveneaux) There is a negligible class \mathcal{P} that is not deep.

Idea: Define a co-c.e. tree ${\cal T}$ and a left-c.e. semi-measure ρ such that

- (i) $M(T_{f(n)}) \leq 2^{-n}$ for some fast-growing $f : \omega \to \omega$ (to ensure negligibility), and
- (ii) $\rho(T_{f(n)}) \ge 2^{-h(n)}$ for some computable order h (to ensure non-depth).

We use a finite injury argument to carry this out.

Why use the co-c.e. tree in the definition of depth?

For every Π_1^0 class \mathcal{P} there is a computable tree $T \subseteq 2^{<\omega}$ such that $\mathcal{P} = [T]$.

Why can't we use this computable tree \mathcal{T} in the definition of depth?

In general, T will contain non-extendible nodes, so even if we can compute some element in T_n , we still may fail to compute an initial segment of a member of \mathcal{P} .

Can we give a better reason to restrict our attention to the canonical co-c.e. tree?

Vindicating the definition, 1

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h such that $M(T_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Proof.

Suppose $M(T_n) \leq 2^{-h(n)}$ for some computable order *h*.

Case 1: T has only finitely many non-extendible nodes.

Then the leftmost path X of T is computable (since T is computable).

It follows that δ_X , the Dirac measure on X, is computable.

Thus there is some c such that $M(T_n) \ge 2^{-c} \delta_X(T_n) = 2^{-c}$, contradicting our assumption.

Vindicating the definition, 2

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- $|\sigma_i| = f(i)$ for every *i*.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that $M(T_{f(n)}) \ge 2^{-c}\rho(T_{f(n)}) \ge 2^{-K(n)-c}.$

But then by our assumption, $2^{-K(n)-c} \leq 2^{-h(f(n))}$, and hence $h(f(n)) \leq K(n) + c$.

This contradicts the fact that there is no computable lower bound for K.

Randoms computing members of deep classes

Which random sequences can compute some member of a deep class?

Note that if X has PA degree and hence can compute a member of every deep class.

Thus, by Stephan's dichotomy theorem, if $X \in MLR$ and $X \ge_T \emptyset'$, X computes some member of a deep class.

But this is the best we can do.

Theorem (Bienvenu, Porter, Taveneaux)

No difference random sequence can compute a member of a deep class.

4. Examples of deep classes

Consistent completions of Peano arithmetic

The following is implicit in work of Levin and Stephan.

Theorem

The Π_1^0 class of consistent completions of PA is a deep class.

Equivalently, we can consider the class ${\cal P}$ of total extensions of a universal partial computable $\{0,1\}\text{-valued function}.$

Let $u(\langle e, x \rangle) = \phi_e(x)$, where $(\phi_e)_{e \in \omega}$ is an effective enumeration of all partial computable $\{0, 1\}$ -valued functions.

We will define a partial computable $\{0, 1\}$ -valued function ϕ_e (where we know *e* in advance by the recursion theorem), and this will allow us to show that \mathcal{P} is deep.

The proof idea, 1

Since we are defining ϕ_e , we have control of the values $u(\langle e, x \rangle)$ for every $x \in \omega$.

Let $(I_k)_{k\in\omega}$ be an effective collection of intervals forming a partition of ω , where we have control of 2^{k+1} values of u inside of I_k for each $k \in \omega$.

Step 1: For each k, we consider the sets

$$E_{k,s} = \{ \sigma \in 2^{<\omega} : \sigma \upharpoonright I_k \text{ extends } u_s \upharpoonright I_k \},\$$

and wait for a stage s such that

$$M(E_{k,s})\geq 2^{-k}.$$

The proof idea, 2

Step 2: Pick some $y \in I_k$ on which we have yet to define u.

Consider the sets

$$E^0_{k,s}(y) = \{\sigma \in E_{k,s} : \sigma(y) = 0\}$$

and

$$E^1_{k,s}(y) = \{ \sigma \in E_{k,s} : \sigma(y) = 1 \}.$$

Then $M(E_{k,s}^{i}(y)) \ge 2^{-(k+1)}$ for i = 0 or 1 (or both).

If this holds for i = 0, we set u(y) = 1; otherwise we set u(y) = 0.

The proof idea, 3

We repeat the process, going back to Step 1.

We can repeat the process at most 2^{k+1} times (since we have enough values to work with in I_k).

Eventually, we will get stuck at Step 1.

Setting $f(k) = \max(I_k)$, we will have

$$M(\{\sigma:\sigma|f(k) \text{ extends } u\}) \leq 2^{-k}.$$

That is,

$$M(T_{f(k)}) \leq 2^{-k}.$$

Shift-complex sequences

For $\delta \in (0,1)$ and $c \in \omega$, we say that $X \in 2^{\omega}$ is (δ, c) -shift complex if

$$\mathsf{K}(\tau) \geq \delta |\tau| - c$$

for every subword τ of X.

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter, Taveneaux) For every $\delta \in (0, 1)$ and $c \in \omega$, the (δ, c) -shift complex sequences form a deep class.

DNR_h functions

Let h be a computable order.

- f is a DNR_h function if
 - f is total,
 - $f(e) \neq \phi_e(e)$ for every e, and
 - f(e) < h(e) for every e.

Theorem (Bienvenu, Porter, Taveneaux) DNR_h is a deep class if and only if $\sum_{n=0}^{\infty} \frac{1}{h(n)} = \infty$.