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MATHEMATICAL AND PHILOSOPHICAL PERSPECTIVES ON

ALGORITHMIC RANDOMNESS

Abstract

by

Christopher P. Porter

The mathematical portion of this dissertation is a study of the various interactions

between definitions of algorithmic randomness, Turing functionals, and non-uniform

probability measures on Cantor space. Chapters 1 and 2 introduce the main results

and the relevant background for the remaining chapters. In Chapter 3, we study

the connection between Turing functionals and a number of different definitions of

randomness, culminating in a number of characterizations of these definitions of ran-

domness in terms of a priori complexity, a notion of initial segment complexity given

in terms of Turing functionals. In Chapter 4, we investigate possible generalizations

of Demuth’s Theorem, an important theorem in algorithmic randomness concerning

the behavior of random sequences under truth-table reducibility. One technique de-

veloped in this chapter, that of inducing a probability measure by means of a special

type of truth-table functional that we call a tally functional, proves to be very use-

ful. We use this technique to study randomness with respect to trivial computable

measures in both Chapters 5 and 6.

In the philosophical portion of this dissertation, we consider the problem of pro-



Christopher P. Porter

ducing a correct definition of randomness, as introduced in Chapter 7: Some have

claim that one definition of randomness in particular, Martin-Löf randomness, cap-

tures the so-called intuitive conception of randomness, a claim known as the Martin-

Löf-Chaitin Thesis, but some have offered alternative definitions as capturing our

intuitions of randomness. Prior to evaluating the Martin-Löf-Chaitin Thesis and re-

lated randomness-theoretic theses, Chapters 8 and 9 discuss two roles of definitions

of randomness, both of which motivated much early work in the development of algo-

rithmic randomness: the resolutory role of randomness, which is successfully filled by

a definition of randomness that allows for the solution of problems in a specific theory

of probability, and the exemplary role of randomness, which is successfully filled by a

definition of randomness that counts as random those sequences that exemplify the

properties typically held by sequences chosen at random. In Chapter 10, we lay out

the status of the Martin-Löf-Chaitin Thesis, discussing the evidence that has been

offered in support of it, as well as the arguments that have been raised against it. In

Chapter 11, we argue that the advocate of a claim like the Martin-Löf-Chaitin Thesis

faces what we call the Justificatory Challenge: she must present a precise account

of the so-called intuitive conception of randomness, so as to justify the claim that

her preferred definition of randomness is the correct one and block the claim of cor-

rectness made on behalf of alternative definitions of randomness. Lastly, in Chapter

12, we present two further roles for definitions of randomness to play, which we call

the calibrative role of randomness and the limitative role of randomness, which can

be successfully filled by multiple definitions of randomness. Definitions filling the

calibrative role allow us to calibrate the level of randomness necessary and sufficient



Christopher P. Porter

for certain “almost-everywhere” results in classical mathematics to hold, while def-

initions filling the limitative role illuminate a phenomenon known as the indefinite

contractibility of the notion of randomness. Moreover, we argue that in light of the

fact that many definitions can successfully fill these two roles, we should accept what

we call the No-Thesis Thesis : there is no definition of randomness that (i) yields

a well-defined, definite collection of random sequences and (ii) captures everything

that mathematicians have taken to be significant about the concept of randomness.
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9.5.3 The Definition of Martin-Löf Randomness . . . . . . . . . . . 264

9.6 Schnorr’s Alternative Definition . . . . . . . . . . . . . . . . . . . . . 268
9.6.1 The Rationale for Schnorr Randomness . . . . . . . . . . . . . 268
9.6.2 An Alternative Formulation of the Exemplary Ideal? . . . . . 270
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PREFACE

The subject of this dissertation is the notion of algorithmic randomness. The

first six chapters treat the mathematics of algorithmic randomness, and the last six

chapters treat the philosophy of algorithmic randomness. Chapter 1 introduces the

mathematical perspective on algorithmic randomness, while Chapter 2 provides the

necessary background for the remaining chapters. Chapters 3 through 6 contain the

mathematical contributions of this dissertation, which involve the interactions be-

tween various notions of algorithmic randomness, Turing functionals, and probability

measures on Cantor space. Chapter 7 introduces the philosophical perspective on

algorithmic randomness that we take here. Chapters 8 and 9 provide an overview of

the historical development of algorithmic randomness, highlighting several purposes

for which definitions of randomness have been developed. Chapters 10 and 11 discuss

the problem of determining whether there is some correct definition of randomness,

i.e. one that captures the prevailing intuitive conception of randomness. Chapter 12

presents an alternative approach to the various definitions of randomness, according

to which no single definition captures everything that mathematicians have taken

to be significant about the concept of randomness. Rather, multiple definitions are

needed to accomplish this task.
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CHAPTER 1

MATHEMATICAL PERSPECTIVES ON ALGORITHMIC RANDOMNESS

An algorithmically random sequence of 0s and 1s cannot be distinguished, by

means of any effective procedure, from a binary sequence produced by a random

process. But not all random processes yield the same probability measure on the

collection of all sequences 2ω. For instance, if our random process is given by the

tosses of a fair coin, the resulting probability measure is the Lebesgue measure, but

if we consider those sequence produced by the tosses of a biased coin, the resulting

probability measure will not be the Lebesgue measure. Consequently, the collection

of sequences that are algorithmically random with respect to this biased measure

will be disjoint from the collection of sequences that are random with respect to the

Lebegue measure.

The primary focus of the mathematical portion of this dissertation is to study

algorithmic randomness with respect to various computable measures. While much

of the work in the theory of algorithmic randomness over the last decade or so has

been concerned with studying notions of algorithmic randomness with respect to

the Lebesgue measure, randomness with respect to various computable measures is

not as well-studied. In particular, one aspect of randomness with respect to com-

putable measures that has not been fully developed is the interaction between Turing

1



functionals, computable measures, and the sequences that are random with respect

to these measures. Most of the results in this dissertation concern precisely this

interaction.

An overview of the results of this portion of the dissertation is as follows. In

Chapter 2, we provide a survey of the main definitions and results in the theory

of algorithmic randomness. However, given the focus on computable measures as

described above, this background material is presented in more generality than what

is typically found in the standard presentations on algorithmic randomness (such

as [Nie09] and [DH10]). In particular, we define the main notions of algorithmic

randomness in terms of an arbitrary computable measure and reprove many of the

standard theorems of algorithmic randomness in this more general setting.

In Chapter 3, we prove the Functional Existence Theorem, a result that guaran-

tees, as long as several technical conditions are satisfied, the existence of a Turing

functional that maps certain amounts of measure to initial segments of a sequence.

Although this result is essentially a reformulation of a result found in the early work

of Levin and Zvonkin [ZL70], a new proof of this result is provided here that is use-

ful for a number of applications. In particular, the Functional Existence Theorem

is used here to provide a number of characterizations of Martin-Löf randomness,

Schnorr randomness, computable randomness, and Kurtz randomness in terms of

various classes of Turing functionals. These latter results were obtained in collabo-

ration with Laurent Bienvenu.

The subject of Chapter 4 is Demuth’s Theorem, an important theorem concern-

ing the behavior of randomness under transformation by truth-table functionals.
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Specifically, Demuth’s Theorem states that every non-computable sequence that is

truth-table reducible to a Martin-Löf random sequence is Turing equivalent to a

Martin-Löf random sequence. The significance of this result is this: If we apply an

effectively continuous transformation to a Martin-Löf random sequence, so long as

we don’t completely destroy the randomness of the original sequence (by mapping it

to a computable sequence), we will be able to extract an unbiased random sequence

from the transformed sequence. We show that Demuth’s Theorem also holds for

Schnorr randomness, computable randomness and weak 2-randomness, albeit using

techniques that differ from the one used to prove Demuth’s Theorem for Martin-Löf

randomness. Next, it is shown that several generalizations of Demuth’s Theorem,

given in terms of weak truth-table reducibility, fail to hold. That is, it is shown

that when we extract an unbiased random sequence from a sequence obtained from

applying an effectively continuous transformation to a random sequence, we can-

not, in general, effectively bound the amount of oracle access needed to recover the

unbiased sequence. Lastly, a characterization is provided of those random Turing

degrees that contain a sequence that (i) is Martin-Löf random with respect to some

computable measure, but (ii) is not Martin-Löf random with respect to any continu-

ous computable measure. The results in this chapter were obtained in collaboration

with Laurent Bienvenu and submitted for publication as an article entitled “Strong

Reductions and Effective Randomness”.

In Chapter 5, the technique used to prove the failure of the weak truth-table

versions of Demuth’s Theorem is isolated and studied. Specifically, the functionals

used in these proofs, referred to as tally functionals, are studied in detail. In the first
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half of the chapter, a number of examples of tally functionals are provided. Further,

two types of measures induced by these functionals, trivial measures and diminutive

measures, are studied. Lastly, tally functionals used to induce trivial computable

measures that witness the separation of different notions of randomness.

Lastly, in Chapter 6, the technique of defining trivial measures by means of

tally functionals is used to study a correspondence between a certain class of trivial

measures and the collection of finite distributive lattices.
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CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Introduction

The goal of this chapter is to provide the main background necessary for the

mathematics portion of the dissertation. We will proceed as follows. In Section 2.2,

the requisite notation is provided, while in Section 2.3, the essentials of computabil-

ity theory are reviewed, drawing mainly from [Soa87]. In Section 2.4, we discuss

computable probability measures on Cantor space, 2ω. Section 2.5 provides a survey

of the main definitions of algorithmic randomness, and then in Section 2.6 several

useful theorems on algorithmic randomness are discussed. While the standard refer-

ences on algorithmic randomness are [Nie09] and [DH10], I will proceed in slightly

more generality; whereas these standard sources are almost exclusively concerned

with notions of randomness with respect to the Lebesgue measure, I will consider

these notions of randomness with respect to any computable probability measure on

2ω.
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2.2 Basic Notation

We will primarily concern ourselves with four kinds of objects: natural numbers,

finite binary strings, and infinite binary sequences. Henceforth, the collections of

these objects will be respectively denoted by

ω, the set of natural numbers;

2<ω, the set of finite binary strings;

2ω, the set of infinite binary sequences, also known as the Cantor space.

Members of ω will be represented by lowercase Roman letters e, i, j, k,m, n, s, t, x, y, z

(and also ` in place of l). Members of 2<ω will be represented by the lowercase Greek

letters α, β, γ, ξ, σ, τ , and the empty string will be written as ∅. Members of 2ω will

be represented by uppercase Roman letters A,B,C,D, S, T, U, V,W,X, Y, Z, while

subsets of 2ω will be represented by script letters O,P ,Q,R,S, T ,U ,V ,W ,X ,Y ,Z.

Subsets of ω and 2<ω will also be represented by uppercase Roman letters, which is

justified by the following two identifications:

(1) The identification of ω and 2<ω: Each σ ∈ 2<ω can be represented by a unique

nσ ∈ ω, where nσ = bin(1σ) − 1, where bin : 2<ω → ω maps a string to the

natural number it represents in binary notion, and 1σ is the concatenation of

the bit 1 with σ. Thus we have,

∅ 7→ 0

0 7→ 1
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1 7→ 2

00 7→ 3

01 7→ 4

and so on.

(2) The identification of subsets of ω and 2ω: Each subset A of ω can be represented

by a unique XA ∈ 2ω as follows:

n ∈ A↔ XA(n) = 1

n /∈ A↔ XA(n) = 0

where, for any X ∈ 2ω and n ∈ ω, X(n) is (n + 1)st bit of X (so that X(0) is

the first bit of X).

Due to this latter identification, I will sometimes also refer to elements of 2ω as sets.

For X ∈ 2ω, X will denote the complement of X in ω; that is, n ∈ X if and only

if n /∈ X for every n ∈ ω. However, for X ⊆ 2ω, X c will denote the complement of

X in 2ω; that is, A ∈ X c if and only if A /∈ X for every A ∈ 2ω.

Given σ ∈ 2<ω, |σ| will denote the length of σ, and σ(n) will denote the (n+ 1)st

bit of σ if n ≤ |σ| − 1 (σ(n) is undefined otherwise). Given σ, τ ∈ 2<ω, σ � τ means

that σ is an initial segment of τ , i.e., σ(n) = τ(n) for every n ≤ |σ| − 1, while σ ≺ τ

means that σ � τ and σ 6= τ . Similarly, given σ ∈ 2<ω and X ∈ 2ω, σ ≺ X means

that σ is an initial segment of X.
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Both στ and σ_τ denote the concatenation of σ and τ , i.e. the unique γ ∈ 2<ω

such that

γ(n) =

 σ(n) if n ≤ |σ| − 1

τ(|σ| − n) if |σ| ≤ n ≤ |σ|+ |τ | − 1

and is undefined otherwise. For σ ∈ 2<ω and X ∈ 2ω, both σX and σ_X denote

the infinite sequence obtained by concatenating σ and X. Further, given X ∈ 2ω

and n ∈ ω, X�n denotes the initial segment of X of length n. Moreover, σ�n is the

length n initial segment of σ, as long as n ≤ |σ| − 1.

Given a collection {τi}i∈ω such that for every j, k ∈ ω, τj � τk or τk � τj,
⋃{τi}i∈ω

is the unique X ∈ 2ω such that τi ≺ X for every i ∈ ω in the case that the lengths

of the τi’s are unbounded; otherwise
⋃{τi}i∈ω is the unique τ such that τi � τ for

every i ∈ ω.

Sometimes, we will consider 2<ω and 2ω ordered lexicographically, where given

σ, τ ∈ 2<ω such that |σ| = |τ |, σ ≤lex τ means that σ(n) = 0 and τ(n) = 1 for

the least n such that σ(n) 6= τ(n). Similarly, for X, Y ∈ 2ω, X ≤lex Y means that

X(n) = 0 and Y (n) = 1 for the least n such that X(n) 6= Y (n).

Lastly, a few odds and ends. We will use 〈·, ·〉 : ω × ω → ω to denote some

standard pairing function.1 For n ∈ ω, 2n = {σ ∈ 2<ω : |σ| = n}, the collection of

strings of length n. The collection of dyadic rationals, i.e. rationals of the form
n

2m

for n,m ∈ ω, will be denoted as Q2. Members of Q2 will be denoted by p, q, or ε. If

f and g are functions from ω to ω, f(n) ≤ g(n) + O(1) means that there is some c

such that for every n, f(n) ≤ g(n) + c.

1For instance, let 〈x, y〉 := 1
2 (x+ y)(x+ y + 1) + y.
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2.3 Computability Essentials

In this section, we review the basics of computability theory, as much of this

material will be useful in the chapters that follow.2 For more details, see, for instance,

[Soare], [Cooper], and [DowHir], chapter 2.

2.3.1 Computability on ω

φe : ω → ω denotes the eth partial computable function for a fixed enumeration

of the partial computable functions. φe(x)↓ means that the eth partial computable

function is defined on input x (in which case we say that φe halts on input x), while

φe(x)↑ means that the eth partial computable function is not defined on x (in which

case we say that φe diverges on input x).

For s ∈ ω, φe,s(x)↓ means φe halts on input x in no more than s steps, and thus

φe(x)↓ implies that φe,s(x)↓ for some s ∈ ω. Similarly, φe,s(x)↑ means that φe does

not halt on input x in s or fewer steps, and thus φe(x)↑ implies that φe,s(x)↑ for

every s ∈ ω.

The universal partial computable function is the function φ defined by

φ(〈x, e〉) =

 φe(x) if φe(x)↓

undefined if φe(x)↑
.

Partial computable functions that are total will henceforth be referred to as com-

2We distinguish here between computability on ω, computability on 2<ω, and computability on
2ω, distinctions that are, in large part, arbitrary, given the identification of ω and 2<ω discussed
above and the fact that computability on 2ω is merely defined in terms of computability on ω
relative to an oracle. This notwithstanding, for our purposes it will be helpful to keep these notions
distinct.
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putable functions. We now define the collections of computable and computably

enumerable sets of natural numbers.

Definition 2.1. A set S ⊆ ω is computable if the characteristic function of S, χS,

is a computable function.

Definition 2.2. A set S ⊆ ω is computably enumerable (or c.e.) if S is the domain

of a partial computable function.

The domain of the eth partial computable function, φe, will be denoted by We.

It’s not difficult to see that a set C is computable if and only if C = We and C = Wi

for some e, i ∈ ω. Let De be the eth finite set, where De = {n1, . . . , nk} if and only if

e = 2n1 +. . .+2nk . One particularly important set is the halting set ∅′ = {e : φe(e)↓},

which is c.e. but not computable.3

A useful collection of computable functions is the collection of computable orders,

where a total function f : ω → ω is an order if f is non-decreasing and unbounded.

Note that if f is a computable order, then the function f−1 defined by

f−1(n) = min{k : f(k) ≥ n}

is also a computable order.

2.3.2 Computability on 2<ω

By the identification of ω and 2<ω discussed above, each partial computable

function φe can be viewed as a map from 2<ω to 2<ω. Thus, we can extend the

3We adopt the convention of using the label ‘∅′’ rather than ‘K’ because we will use ‘K’ to refer
to prefix-free Kolmogorov complexity, introduced below.
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definition of computable and computably enumerable subsets of ω to computable

and computably enumerable subsets of 2<ω. Further, viewing partial computable

functions as maps from 2<ω to 2<ω, we can impose a useful restriction on the class of

partial computable functions, namely that the domain of such a function be prefix-

free.

Definition 2.3. A set S ⊆ 2<ω is prefix-free if for every σ, τ ∈ S, if σ � τ or τ � σ,

then σ = τ .

We will refer to a partial computable function whose domain is prefix-free as a

prefix-free machine, and {Me}e∈ω will denote the collection of prefix-free machines.

Just as there is a universal partial computable function, there is a universal

prefix-free machine. For example, the function

U(1e0σ) =

 Me(σ) if Me(σ)↓

undefined if Me(σ)↑

for each e ∈ ω and σ ∈ 2<ω is a universal prefix-free machine.

2.3.3 Computability on 2ω

There are several ways to define a computable functional on 2ω, two of which we

will employ throughout this study. First, if we let {φAe }e∈ω be the collection of partial

computable functions relative to a fixed oracle A ∈ 2ω and view these functions as

{0, 1}-valued (interpreting any non-zero output as equal to 1), then we can think of
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φe as mapping A to some B ∈ 2ω if

φAe = χB,

where χB is the characteristic function of the set B. Further, given σ ∈ 2<ω, if we

define φσe to be φσe,|σ| (the computation is run |σ| many steps), it follows that

(i) φAe (n)↓ implies that φσe (n)↓ for some σ ≺ A;

(ii) if φσe (n)↓, then φτe(n)↓ for every σ � τ ; and

(iii) φAe (n)↑ implies that φσe (n)↑ for every σ ≺ A.

If φAe (n)↓, the use of the computation is x+1, where x is the largest number such

that the value A(x) is queried in the course of the computation. Items (i) and (ii)

above imply what is known as the Use Principle: If the use of a halting computation

φAe (n) is u, then for any B ∈ 2ω such that B�(u+ 1) = A�(u+ 1), φBe (n)↓ = φAe (n).

The Turing jump of a sequence A ∈ 2ω if defined to be

A′ := {e : φAe (e)↓}.

An equivalent way to define a computable functional on 2ω, which we will adopt

here, is to define a computable functional Φ : 2ω → 2ω to be a c.e. set of pairs of

strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ Φ and σ � σ′, then τ � τ ′. Then, for

σ ∈ 2ω, if we define

Φσ :=
⋃
{τ : ∃σ′ � σ(σ′, τ) ∈ Φ},
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then given B ∈ 2ω,

Φ(B) :=
⋃
n

ΦB�n.

Equivalently, we can define Φ(B) =
⋃{τ : ∃n(B�n, τ) ∈ Φ}. If Φ(B) ∈ 2ω, we say

Φ(B) is defined, denoted Φ(B)↓; if there is some n such that Φ(B)(n) is undefined,

we write Φ(B)↑. Henceforth, I will refer to such functionals as Turing functionals.

The domain of a Turing functional Φ, denoted dom(Φ), is thus

dom(Φ) = {X ∈ 2ω : Φ(X)↓}.

2.3.4 The Turing Degrees

By means of Turing functionals, we can now define Turing reducibility and the

Turing degrees. For a Turing functional Φ and A,B ∈ 2ω, if Φ(B)↓ = A, then A

is Turing reducible to B, denoted A ≤T B. Moreover, we will say that A and B

are Turing equivalent, denoted A ≡T B. Lastly, the Turing degree of A, denoted

degT (A), is defined to be

degT (A) = {B : A ≡T B}.

In general, Turing degrees will be written as bold lowercase Roman letters a,b, and

so on.

The Turing degrees form an upper semilattice, meaning that they are a partially

ordered set with a join operation defined on every nonempty finite set of elements:

For Turing degrees a, b and A ∈ a and B ∈ b, a ≤ b if A ≤T B for A ∈ a and
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B ∈ b, and a ∪ b = degT (A⊕B), where A⊕ B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.

Given A1, . . . , An ∈ 2ω,

n⊕
i=1

Ai = (. . . ((A1 ⊕ A2)⊕ A3)⊕ . . . )⊕ An.

Clearly, Ai ≤T
⊕n

i=1Ai for i ≤ n. Further, for an infinite collection A1, A2, . . . ∈ 2ω,

⊕
i∈ω

Ai = {〈i, n〉 : n ∈ Ai}.

Again, it’s not hard to see that Ai ≤T
⊕

i∈ω Ai for every i ∈ ω. Note that the

jump operator on sets can be extended to Turing degrees, so that A ∈ a, implies

degT (A′) = a′.

Two notable Turing degrees are degT (∅) = 0, the Turing degree of the computable

sets, and degT (∅′) = 0′ the Turing degree of the halting problem. Two notable classes

of Turing degrees are the low degrees and the high degrees.

- A sequence A has low Turing degree if A′ ≡T ∅′; that is, the jump of A is as

low as possible.

- A sequence A has high Turing degree if A′ ≡T ∅′′; that is, the jump of A is as

high as possible.

Lastly, the collection of ∆0
2 Turing degrees is the collection {a : a ≤ 0′}. Moreover,

Schoenfield’s Limit Lemma says that a set A ∈ 2ω of ∆0
2 degree has a computable
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approximation of finite sets {As}s∈ω such that for every n,

lim
s→∞

As(n) = A(n);

that is, for every n, there is some s ∈ ω such that for every t ≥ s, At(n) = A(n).

2.3.5 Strong Reducibilities

In this study, two strong Turing reductions play a prominent role, truth-table

reducibility and weak truth-table reducibility.

Definition 2.4. A Turing functional Φ : 2ω → 2ω is

(i) a weak truth-table functional if there is some computable function f that

bounds the use of Φ; and

(ii) a truth-table functional if Φ is total.

A well-known fact is that every truth-table functional is a weak truth-table func-

tional. It follows for every truth-table functional Φ that there is a computable func-

tion h : ω → ω such that for every A ∈ 2ω and every n ∈ ω, |ΦA�h(n)| ≥ n (if f is the

computable function that bounds the use of Φ, then take h(n) = max{f(k) : k ≤ n}).
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2.4 Topology and Measure on Cantor Space

2.4.1 Topological Considerations

We consider the product topology on 2ω, given by basic open sets (also known as

cylinders) of the form

JσK = {X ∈ 2ω : σ ≺ X}

for every σ ∈ 2<ω. Under this topology, 2ω is metrizable and compact. The effectively

open subsets of 2ω, also known as Σ0
1 classes, are thus given by effective unions of

basic open sets. More precisely, given a c.e. set W ⊆ 2<ω, U =
⋃
σ∈W JσK is a Σ0

1

class. Moreover, we can set Us =
⋃
σ∈Ws

JσK for s ∈ ω.

A Π0
1 class is P ⊆ 2ω is an effectively closed subset of 2ω, so that P = U c for some

Σ0
1 class U . Equivalently, a Π0

1 class is the collection of paths through a computable

tree:

- T ⊆ 2<ω is a tree if σ ∈ T implies that τ ∈ T for every τ ≺ σ.

- If T is a tree, then X ∈ 2ω is a path through T if X�n ∈ T for every n ∈ ω.

- The collection of paths through T is denoted [T ].

Lastly, a tree T is computable if T is computable as a subset of 2<ω.

There are certain facts about Π0
1 classes that will be useful for our purposes.

Theorem 2.5 (Low Basis Theorem). For every Π0
1 class P, there is X ∈ P that is

low, i.e., X ′ ≡T ∅′.
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X ∈ 2ω has hyperimmune-free degree if every f ≤T X is dominated by a computable

function, i.e. there is some computable function g such that f(n) ≤ g(n) for every

n ∈ ω.

Theorem 2.6 (Hyperimmune-Free Basis Theorem). For every Π0
1 class P, there is

X ∈ P that has hyperimmune-free degree.

X ∈ 2ω has c.e. degree if there is some c.e. set W such that W ≡T X.

Theorem 2.7 (Kreisel Basis Theorem). For every Π0
1 class P, there is X ∈ P that

has c.e. Turing degree.

It is also worth noting that every isolated path through a Π0
1 class is computable.

Starting with Σ0
1 classes and Π0

1 classes, we can define more complicated effectively

Borel sets. First note that there are effective enumerations of all Σ0
1 classes {Ui}i∈ω

and of all Π0
1 classes {Pi}i∈ω

- A Π0
2 class is an effective intersection of Σ0

1 classes. Given a uniform collection

of Σ0
1 classes {Uf(i)}i∈ω for some computable function f ,

S =
⋂
i∈ω

Uf(i)

is a Π0
2 class.

- A Σ0
2 class is an effective union of Π0

1 classes. Given a uniform collection of Π0
1

classes {Pg(i)}i∈ω for some computable function g,

T =
⋃
i∈ω

Pg(i)
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is a Σ0
2 class.

Similarly, Π0
n+1 classes are effective intersections of Σ0

n classes, and Σ0
n+1 classes

are effective unions of Π0
n classes.

2.4.2 Computable Measures

A Borel probability measure on 2ω is a non-negative, countably additive function

µ : P(2ω) → [0, 1] such that µ(∅) = 0 and µ(S) ∈ [0, 1] for every Borel S ⊆ 2ω.

However, by Caratheodory’s theorem from classical measure theory, a function µ

defined on cylinders and satisfying for all σ the identity µ(JσK) = µ(Jσ0K) + µ(Jσ1K)

can be uniquely extended to a probability measure, and hence it is sufficient to con-

sider the restriction of probability measures to cylinders. We can therefore represent

measures as functions from 2<ω to [0,1], where for all σ ∈ 2<ω, µ(σ) is the measure of

the cylinder JσK. This concise representation also allows us to talk about computable

probability measures.

Before we give the definition of a computable measure, we need to define several

notions from computable analysis.

Definition 2.8. (i) A real number r ∈ [0, 1] is left-c.e. if there is a uniformly

computable, non-decreasing sequence of rationals converging to r.

(ii) A real number r ∈ [0, 1] is right-c.e. if there is a uniformly computable, non-

increasing sequence of rationals converging to r.

(iii) A real number r ∈ [0, 1] is computable if it both left-c.e. and right-c.e.
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It’s not hard to show that r ∈ [0, 1] is computable if and only if there is a

uniformly computable sequence of rationals {qn}n∈ω such that

|r − qn| ≤ 2−n.

Definition 2.9. A probability measure µ on 2ω is computable if σ 7→ µ(σ) is com-

putable as a real-valued function, i.e. if there is a computable function µ̂ : 2<ω×ω →

Q2 such that

|µ(σ)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω. We further say that µ is exactly computable if for all σ

µ(σ) ∈ Q2 and σ 7→ µ(σ) is computable as a function from 2<ω to Q2.

The collection of all measures on 2ω will be denoted by M , while the collection

of computable measures on 2ω will be denoted by Mc. In what follows λ will refer

exclusively to the Lebesgue measure on 2ω, where λ(σ) = 2−|σ| for each σ ∈ 2<ω.

The Lebesgue measure is particularly important, as it is the “default measure” for

the many definitions of randomness. For our purposes, it will be useful to identify

several different types of measures.

Definition 2.10. Let µ ∈M .

(i) µ is positive if µ(σ) > 0 for every σ ∈ 2<ω. Equivalently, µ is positive if

µ(U) > 0 for every non-empty open set U .

(ii) µ is atomic if there is some sequence A ∈ 2ω such that µ({A}) > 0. In this

case, we call A an atom of µ or a µ-atom. The collection of µ-atoms is denoted
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Atomsµ.

(iii) µ is atomless if µ has no atoms.

(iv) µ is trivial if µ(Atomsµ) = 1.

An important result is the following.

Proposition 2.11 (Kautz). X ∈ 2ω is computable if and only if X ∈ Atomsµ for

some µ ∈Mc.

Proof. If X is computable, we can define µ ∈Mc such that

µ(σ) =

 1 if σ = X�n for some n ∈ ω

0 otherwise
.

For the other direction, if X ∈ Atomsµ, then it follows that µ({X}) > q for some

q ∈ Q2. Using the approximation µ̂ of µ, define a computable tree as follows:

T = {σ ∈ 2<ω : µ̂(σ, |σ|) ≥ q − 2−|σ|}.

q ∈ Q2 implies that q =
k

2m
for some k,m ∈ ω. For each n ≥ m,

1

q − 2−n
=

1
k

2m
− 2−n

=
2m

k − 2m−n
≤ 2m

k − 1
.

It follows that T contains at most 2m

k−1
strings of length n for every n ≥ m. Then

X ∈ [T ], but as there are at most 2m

k−1
paths through T , X must be an isolated path,

and is thus computable.
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2.4.3 Turing Functionals and Induced Measures

We define the class of “almost total” Turing functionals. Recall that we consider

Turing functionals as maps from 2ω to 2ω, so that for X ∈ 2ω, Φ(X)↓ if and only if

Φ(X) ∈ 2ω if and only if X ∈ dom(Φ).

Definition 2.12. A Turing functional Φ is almost total if λ(dom(Φ)) = 1.

To be clear, if Φ is almost total, this means that Φ(X) is total as a map from ω

to {0, 1} for measure one many X ∈ 2ω. It is immediate that every truth-table

functional is almost total.

We are interested in studying almost total functionals due to the fact that they

can be used to induce computable measures. For a Turing functional Φ and S ∈ 2ω,

Φ−1(S) = {X ∈ 2ω : Φ(X)↓ ∈ S}.

Definition 2.13. Given an almost total functional Φ : 2ω → 2ω, the measure induced

by Φ, denoted λΦ, is defined to be

λΦ(X ) = λ(Φ−1(X ))

for every measurable X ⊆ 2ω.

In general, we can consider the measure induced by a probability measure µ and

a functional Φ, but we have to make the further restriction that Φ is almost total
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with respect to µ, i.e., µ(dom(Φ)) = 1. Thus we have the following definition.

Definition 2.14. Given a measure µ on 2ω and a µ-almost total functional Φ : 2ω →

2ω, the measure induced by (µ,Φ), denoted µΦ, is defined to be

µΦ(X ) = µ(Φ−1(X ))

for every µ-measurable X ⊆ 2ω.

Intuitively, µΦ can be computed if µ and Φ are given. This is formalized by the

following lemma.

Lemma 2.15. For a given measure µ on 2ω and a functional Φ : 2ω → 2ω, the

following hold.

1. If µ is computable and Φ is a µ-almost total reduction, then µΦ is computable.

2. If µ is exactly computable and Φ is a tt-reduction, then µΦ is exactly computable.

Proof. We proceed inductively as follows: First,

µΦ(∅) = µ(Φ−1(J∅K)) = µ(Φ−1(dom(Φ))) = 1,

since Φ is almost total. Now suppose that µΦ(σ) is computable. Then µΦ(σ0) and

µΦ(σ1) are both approximable from below, and since µΦ(σ) = µΦ(σ0) + µΦ(σ1), it

follows that both µΦ(σ0) and µΦ(σ1) are approximable from above. Thus, both are

computable.
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For the second part, let f be a computable function such that for every X, Y ∈ 2ω,

if Φ(X) = Y , then for every n ∈ ω, ΦX�f(n) � Y �n. Without loss of generality, we

can assume that if |σ| = n and |τ | < f(n), then Φτ 6� σ. If we define

PreΦ(σ) := {τ ∈ 2<ω : Φτ � σ ∧ (∀τ ′ � τ)Φτ ′ 6� σ},

(so that JPreΦ(σ)K = Φ−1(JσK)),4 it follows that

PreΦ(σ) = {τ ∈ 2f(|σ|) : Φτ � σ}

and thus

µΦ(σ) = µ(Φ−1(JσK)) = µ
( ⋃
τ∈PreΦ(σ)

JτK
)

=
∑

τ∈PreΦ(σ)

µ(τ),

which is Q2-valued because µ is Q2-valued and PreΦ(σ) is finite. Moreover, since we

can find, effectively in σ, the index for PreΦ(σ) as a finite set, if follows that µΦ is a

computable function from 2<ω to Q2, and thus is exactly computable.

We can also show that the induced measure µΦ as defined above shares certain

features of the original measure µ as long as the functional Φ satisfies some additional

condition:

Lemma 2.16. Let µ be a measure on 2ω and let Φ be a µ-almost total functional.

Then the following hold.

1. If µ is atomless and Φ is one-to-one, then µΦ is atomless.

4In general, JPreΦ(σ)K ⊇ Φ−1(JσK) holds for every Turing functional, but if Φ is total, then the
reverse containment holds as well.

23



2. If µ is positive and Φ is onto, then µΦ is positive.

Proof. Suppose µ is atomless and Φ is one-to-one. Then for all X ∈ 2ω, µΦ({X}) =

µ(Φ−1({X})). Since Φ is one-to-one, Φ−1({X}) is either empty or is a singleton.

In the former case, clearly µ(Φ−1({X})) = 0, while in the latter case, since µ is

atomless, it also follows that µ(Φ−1({X})) = 0.

Suppose now that µ is positive and Φ is onto. Let U be a non-empty open set.

Since Turing functionals are continuous on their domain and Φ is onto, it follows

that Φ−1(U) is non-empty and open in dom(Φ). Thus, Φ−1(U) = dom(Φ) ∩ V for

some non-empty V ⊆ 2ω that is open in 2ω. But since Φ is almost total and µ is

positive, we have

µΦ(U) = µ(Φ−1(U)) = µ(dom(Φ) ∩ V) = µ(V) > 0.

2.5 Notions of Algorithmic Randomness

In this section we review a number of definitions of algorithmic randomness.

While most presentations found in the literature present these definitions with respect

to the Lebesgue measure on 2ω, here we will consider the various definitions of

randomness with respect to any computable measure on 2ω. Proofs will be provided

for most of the results below, especially in those cases in which there is no proof

available in the algorithmic randomness literature (which is the case for many results

given in terms of an arbitrary computable measure, a case that usually calls for a
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slight modification of the standard proof found in [DH10] or [Nie09]).

2.5.1 Martin-Löf Randomness

Martin-Löf randomness is the most well-studied, and in many respects, the most

well-behaved definition of algorithmic randomness. In what follows, we will consider

three equivalent formulations of Martin-Löf randomness: the measure-theoretic def-

inition, the martingale definition, and the incompressibility definition.

2.5.1.1 Measure-Theoretic Formulation

When Martin-Löf first presented his definition of randomness in 1966 (in [ML66]),

he formulated it in terms of certain effective statistical tests, the idea being that a

random sequence is not detected as non-random by any such test. Nowadays, these

tests are referred to as Martin-Löf tests.5

Definition 2.17. Given µ ∈ Mc, a µ-Martin-Löf test is a uniformly computable

sequence {Ui}i∈ω of effectively open classes in 2ω such that µ(Ui) ≤ 2−i for every

i ∈ ω. Further, a real X is µ-Martin-Löf random if for every µ-Martin-Löf test

{Ui}i∈ω, we have X /∈ ⋂i∈ω Ui.

The collection of µ-Martin-Löf random reals will be written as MLRµ. However,

when µ = λ, the Lebesgue measure, we will write MLRλ simply as MLR.

The following result, originally proved by Martin-Löf, is very useful.

5For a discussion of the philosophical motivation behind Martin-Löf’s definition, see Chapter
9, Section 9.5.
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Proposition 2.18. For every µ, there is a Martin-Löf test {Ûi}i∈ω (called the uni-

versal µ-Martin-Löf test) such that X ∈ MLRµ if and only if x /∈ ⋂i∈ω Ûi.

One simple result concerning Martin-Löf randomness for various computable mea-

sures, which has not been noted previously, will be useful for our later discussion.

Lemma 2.19. For µ, ν ∈Mc, MLRµ ∪MLRν = MLRρ, where ρ = µ+ν
2

.

Proof. Suppose X /∈ MLRµ ∪MLRν . Then there is a µ-Martin-Löf test {Ui}i∈ω and

a ν-Martin-Löf test {Vi}i∈ω such that X ∈ ⋂i∈ω Ui and X ∈ ⋂i∈ω Vi. If we set

Wi := Ui ∩ Vi, then Wi is Σ0
1 (as JσK is enumerated into Wi only after we’ve seen it

enumerated into Ui and Vi) with

µ(Wi) ≤ µ(Ui) ≤ 2−i

since Wi ⊆ Ui, and

ν(Wi) ≤ ν(Vi) ≤ 2−i,

since Wi ⊆ Vi. It follows that

ρ(Wi) =
1

2
(µ(Wi) + ν(Wi)) ≤ 2−i,

and thus {Wi}i∈ω is a ρ-Martin-Löf test containing X.

For the other direction, suppose that X /∈ MLRρ. Then if {Ui}i∈ω is a ρ-Martin-

Löf test such that x ∈ ⋂i∈ω Ui, it follows that

µ(Ui) + ν(Ui)
2

≤ 2−i
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and hence

µ(Ui) ≤ µ(Ui) + ν(Ui) ≤ 2−i+1.

Thus {Ui}i≥1 is a µ-Martin-Löf test containing X, and hence X /∈ MLRµ. Similarly,

X /∈ MLRν .

An important consequence of Lemma 2.19 is that it allows us to replace a non-

positive measure µ with a positive measure ν without losing any of the µ-Martin-Löf

random reals.

Corollary 2.20. If µ ∈Mc is not positive, there is a positive ρ ∈Mc such that

MLRµ ( MLRρ.

Proof. Let ρ(σ) = µ(σ)+λ(σ)
2

for every σ ∈ 2<ω (where λ is the Lebesgue measure).

Clearly, ρ is positive, as λ is positive.

2.5.1.2 The Martingale Formulation

An alternative formulation of Martin-Löf randomness can be given in terms of

martingales, an approach developed in the 1930s by Jean Ville to formalize the notion

of a betting strategy (see [Vil39]). The general idea is this. Suppose we are playing

a game in which we attempt to predict the successive values of a sequence. At each

round, having seen the first n bits of a sequence X, we bet a certain amount of our

capital that the (n+1)st bit of X will be a 0 (and a certain amount that the (n+1)st

bit will be a 1). For each such bet, there is a resulting payoff, which determines the
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underlying measure in terms of which we define the martingale. For instance, if we

playing the game with a double-or-nothing payoff, we are play with a λ-martingale.

Moreover, a supermartingale is a betting strategy that permits us to bet some of our

capital on 0 and some of our capital on 1 while still setting aside some of our capital

to be saved for later rounds.

We first provide the definition of martingales and supermartingales without any

constraints on the effectiveness of these betting strategies (and without any con-

straints on the underlying probability measures), and then we define the classes of

computable and computably enumerable martingales and supermartingales.

Definition 2.21. For any µ ∈M , a µ-martingale is a function d : 2<ω → R≥0 such

that for every σ ∈ 2<ω,

µ(σ)d(σ) = µ(σ0)d(σ0) + µ(σ1)d(σ1).

Further, a µ-supermartingale is a function d : 2<ω → R≥0 such that for every σ ∈ 2<ω,

µ(σ)d(σ) ≥ µ(σ0)d(σ0) + µ(σ1)d(σ1). (2.1)

Moreover, a µ-martingale (or µ-supermartingale) d succeeds on x ∈ 2ω if

lim sup
n→∞

d(x�n) =∞.

Let Sd ⊆ 2ω denote the collection of sequences on which the martingale (or

supermartingale) d succeeds. Supermartingales are often easier to work with in the
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context of Martin-Löf randomness (but not for alternative definitions of algorithmic

randomness), and the following proposition guarantees that there is no loss if we

work with supermartingales, rather than just martingales.

Proposition 2.22. Let µ ∈ M . Then for every µ-supermartingale d, there is a

µ-martingale d∗ such that

Sd ⊆ Sd∗ .

Proof. Given a µ-supermartingale d, let the savings function s : 2<ω → R≥0 be

s(σ) = d(σ)− (µ(σ0|σ)d(σ0) + µ(σ1|σ)d(σ1)),

where µ(σ_i|σ) =
µ(σ_i)

µ(σ)
for i ∈ {0, 1}. Then we set

d∗(σ) = d(σ) +
∑
τ≺σ

s(τ)

and d∗(σ) = d(σ) Then we claim that d∗ is a µ-martingale. Suppose that

µ(σ)d∗(σ) = µ(σ0)d∗(σ0) + µ(σ1)d∗(σ1),
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for every σ of length at most n− 1. Then given σ ∈ 2n,

µ(σ0)d∗(σ0) + µ(σ1)d∗(σ1) = µ(σ0)
(
d(σ0) +

∑
τ�σ

s(τ)
)

+ µ(σ1)
(
d(σ1) +

∑
τ�σ

s(τ)
)

= µ(σ0)d(σ0) + µ(σ1)d(σ1) + (µ(σ0) + µ(σ1))
∑
τ�σ

s(τ)

= µ(σ0)d(σ0) + µ(σ1)d(σ1) + µ(σ)
∑
τ�σ

s(τ)

= µ(σ0)d(σ0) + µ(σ1)d(σ1) + µ(σ)s(σ) + µ(σ)
∑
τ≺σ

s(τ)

= µ(σ)d(σ) + µ(σ)
∑
τ≺σ

s(τ) (by the definition of s)

= µ(σ)d∗(σ).

Lastly, note that d∗(σ) ≥ d(σ) for every σ ∈ 2<ω, and hence Sd ⊆ Sd∗ .

We will also make use of the fact that the average condition in (2.1) can be

generalized:

Lemma 2.23. Let d be a µ-supermartingale and let {σ1, σ2, . . . } ⊆ 2<ω be a prefix-

free set of extensions of some τ ∈ 2<ω. Then

∑
i

µ(σi)d(σi) ≤ µ(τ)d(τ). (2.2)

In particular, for any prefix-free S ⊆ 2<ω,

∑
σ∈S

µ(σ)d(σ) ≤ d(∅).
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Proof. We show this holds for every finite set {σ1, . . . , σk}, from which it will follow

that (2.2) holds for every infinite prefix-free collection of strings by induction. First,

given σ � τ , it follows from the definition of a supermartingale that

µ(σ)d(σ) ≤ µ(τ)d(τ).

Now suppose the result holds for every prefix-free set of n strings. Given a prefix-

free S = {σ1, . . . , σn+1} ⊆ 2<ω of extensions of some τ (where τ is the longest such

string), then setting

S0 = {σ ∈ S : σ � τ0} ∧ S1 = {σ ∈ S : σ � τ1}

it follows from our choice of τ that |Si| ≤ n for both i ∈ {0, 1}. Thus, by the

inductive hypothesis,

∑
σ∈S0

µ(σ)d(σ) ≤ µ(τ0)d(τ0) ∧
∑
σ∈S1

µ(σ)d(σ) ≤ µ(τ1)d(τ1)

and so ∑
σ∈S

µ(σ)d(σ) ≤ µ(τ0)d(τ0) + µ(τ1)d(τ1) ≤ µ(τ)d(τ).

Now, we restrict the martingales and supermartingales to a nice effectively ap-

proximable collection.

Definition 2.24. A µ-martingale (or µ-supermartingale) d is computably enumer-
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able if the collection of left-cuts given by the values {d(σ)}σ∈2<ω is a uniformly c.e.

collection of rationals.

Now according to Ville’s definition, a sequence X is random if there is no martin-

gale (in some restricted collection of martingales) that wins an unbounded amount

of capital when applied to initial segments of X. The following result of Schnorr’s

shows that this idea, suitably formalized, yields a definition of randomness that is

equivalent to Martin-Löf randomness.

Theorem 2.25. For µ ∈ Mc, X ∈ MLRµ if and only if no c.e. µ-supermartingale

succeeds on X.

To prove Theorem 2.25, two lemmas are needed.

Lemma 2.26. For any measure µ on 2ω and a µ-martingale (or µ-supermartingale)

d, if we set

Ui = {X ∈ 2ω : (∃n)d(X�n) ≥ 2i}

then µ(Ui) ≤ 2−i.

Proof. Let Ui ⊆ 2<ω be a prefix-free set of strings such that Ui = JUiK. Then by

Lemma 2.23 and the definition of Ui,

∑
σ∈Ui

µ(σ)2i ≤
∑
σ∈Ui

µ(σ)d(σ) ≤ d(∅)

and thus

µ(Ui) =
∑
σ∈Ui

µ(σ) ≤ 2−i.
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Lemma 2.27. For µ ∈ Mc, if (di)i∈ω is a uniform collection of c.e. µ-martingales

(or µ-supermartingales) such that for each i, di(σ) ∈ [0, 1] for every σ ∈ 2<ω, then

the function d : 2<ω → R≥0 defined, for each σ ∈ 2<ω, by

d(σ) =
∑
i∈ω

di(σ)

is a c.e. µ-martingale (or µ-supermartingale).

Proof. It is routine to verify that the µ-martingale condition is satisfied.

Proof of Theorem 2.25. (⇒) We prove the contrapositive. Suppose there is X ∈ 2ω

and some c.e. µ-supermartingale d such that d succeeds on X. Without loss of

generality, we can suppose that d(∅) ≤ 1. Then setting

Ui = {X ∈ 2ω : (∃n)d(X�n) ≥ 2i},

{Ui}i∈ω is a µ-Martin-Löf test, since {Ui}i∈ω is clearly uniformly c.e. and µ(Ui) ≤ 2−i

by Lemma 2.26. Since d succeeds on X, it follows that X ∈ ⋂i∈ω Ui, and hence

X /∈ MLRµ.

(⇐) We also prove the contrapositive. Suppose that X /∈ MLRµ. Then there is a

µ-Martin-Löf test {Ui}i∈ω such that X ∈ ⋂i∈ω Ui. Now if for fixed i ∈ ω we define

µ(Ui|σ) =
µ(Ui ∩ JσK)

µ(σ)
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to be the conditional µ-measure of Ui given σ, then µ(Ui|·) : 2<ω → R≥0 is a c.e.

µ-martingale. To see this, observe that

µ(σ)µ(Ui|σ) = µ(σ)
µ(Ui ∩ JσK)

µ(σ)

= µ(Ui ∩ JσK)

= µ(Ui ∩ Jσ0K) + µ(Ui ∩ Jσ1K)

= µ(σ0)
µ(Ui ∩ Jσ0K)

µ(σ0)
+ µ(σ1)

µ(Ui ∩ Jσ1K)
µ(σ1)

= µ(σ0)µ(Ui|σ0) + µ(σ1)µ(Ui|σ1).

Further, µ(Ui|σ) ∈ [0, 1] for every σ ∈ 2<ω. Thus by Lemma 2.27, the function

d : 2<ω → R≥0 defined to be

d(σ) =
∑
i∈ω

µ(Ui|σ)

for each σ ∈ 2<ω is a c.e. µ-martingale. Now, since X ∈ ⋂i∈ω Ui, for each i, there

is some n ∈ ω such that JX�nK ⊆ Ui, and hence for every n′ ≥ n, µ(Ui|X�n′) = 1.

Thus, for every c ∈ ω there is some n such that d(X�n) ≥ c, which implies that d

succeeds on X.

We conclude this subsection with proposition that guarantees that c.e. super-

martingales can be effectively approximated.

Definition 2.28. A supermartingale approximation is a uniformly computable se-
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quence (di)i∈ω of supermartingales such that each di is Q2-valued and

di+1(σ) ≥ di(σ)

for every i ∈ ω and σ ∈ 2<ω.

Proposition 2.29. For every c.e. supermartingale d, there is a supermartingale

approximation (di)i∈ω such that d(σ) = supi∈ω di(σ) for every σ ∈ 2<ω.

Proof. See [Nie09], Fact 7.2.4.

2.5.1.3 The Incompressibility Formulation

A third formulation of Martin-Löf randomness can be given in terms of initial

segment complexity. On this approach, random sequences are those with high initial

segment complexity, which means that the initial segments of such sequences cannot

be compressed very much. To make this precise, we measure the amount that a

string can be compressed by means of Kolmogorov complexity.

Definition 2.30. Given a partial computable function φ : 2<ω → 2<ω and some

σ ∈ 2<ω, the plain Kolmogorov complexity of σ with respect to φ if

Cφ(σ) = min{|τ | : φ(τ) = σ}.

If we define a universal partial computable φ̂ : 2<ω → 2<ω so that φ̂(1e0τ) = φe(τ)
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whenever φe(τ)↓, then it follows that

Cφ̂(σ) ≤ Cφe(σ) + e+ 1

for e ∈ ω and σ ∈ 2<ω. Thus, we set

C(σ) := Cφ̂(σ)

and call this the plain Kolmogorov complexity of σ.

With this definition of Kolmogorov complexity, we can now define what it means

for a string to be incompressible.

Definition 2.31. For c ∈ ω and σ ∈ 2<ω, σ is c-incompressibleC if

C(σ) ≥ |σ| − c.

That is, c-incompressibleC strings cannot be compressed more than c bits below

their length. With this definition, one reasonable suggestion is to define X ∈ 2ω to

be incompressible if there is some c such that every n ∈ ω, X�n is c-incompressibleC .

However, Martin-Löf showed that no sequence has this property.

Proposition 2.32. For every X ∈ 2ω, for every c ∈ ω, there is some n ∈ ω such

that

C(X�n) < n− c.

Proof. See [DH10], Theorem 3.1.4.
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However, Martin-Löf was able to show the following:

Theorem 2.33. For X ∈ 2ω, if there is some c ∈ ω such that

(∃∞n)C(X�n) ≥ n− c

then X ∈ MLR.

Proof. See, for instance, the proof of Theorem 5 in [ML71].

To remedy this problem, a number of suggestions were made to restrict the col-

lection of partial computable functions, thereby modifying the notion of complexity,

so as to prevent 2.32 from occurring. One suggestion made independently by Levin

([Lev10]) and Chaitin ([Cha75]) is to restrict to prefix-free free machines, which we

introduced in Subsection 2.3.2 above. Thus we have:

Definition 2.34. Given a prefix-free machine M : 2<ω → 2<ω and some σ ∈ 2<ω,

the prefix-free Kolmogorov complexity of σ with respect to M if

KM(σ) = min{|τ | : M(τ) = σ}.

As before, if we let U be a universal prefix-free machine, so that U(1e0τ) = Me(τ)

whenever Me(τ)↓, then we define K(σ) := KU(σ) to be the prefix-free Kolmogorov

complexity of σ.

The analogue of the c-incompressibleC strings are the c-incompressibleK strings.
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Definition 2.35. For c ∈ ω and σ ∈ 2<ω, σ is c-incompressibleK if

K(σ) ≥ |σ| − c.

Now if we define a sequence X ∈ 2ω to be incompressible if there is some c ∈ ω

such that for every n ∈ ω, X�n is c-incompressibleK , then the result is a non-empty

notion, as shown independently by Levin and Schnorr.

Theorem 2.36 (Levin-Schnorr). For X ∈ 2ω, X ∈ MLR if and only if there is some

such c ∈ ω such that

K(X�n) ≥ n− c

for every n ∈ ω.

This result actually holds in the more general case where we define the threshold

of incompressibility in terms of a computable measure µ.

Theorem 2.37. For µ ∈ Mc, X ∈ MLRµ if and only if there is some c ∈ ω such

that

K(X�n) ≥ − log µ(X�n)− c

for every n ∈ ω.

To prove one direction of the Levin-Schnorr Theorem and its more general coun-

terpart, we need an important auxiliary result known as the Machine Existence

Theorem (also referred to as the KC Theorem).

Theorem 2.38 (Machine Existence Theorem). Let W = {(ni, τi)}i∈ω ⊆ ω × 2<ω be
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a c.e. set of pairs satisfying ∑
(ni,τi)∈W

2−n ≤ 1.

Then there is a prefix-free machine M and a prefix-free collection of strings {σi}i∈ω
such that

|σi| = ni ∧ M(σi) = τi

for every i ∈ ω.

Proof. See [Nie09], Proposition 2.2.14.

Henceforth, the setW satisfying the conditions of the Machine Existence Theorem

will be referred to as a bounded request set.

Let us now prove the more general version of the Levin-Schnorr Theorem.

Proof of Theorem 2.36. (⇒) Given µ ∈Mc, for each k ∈ ω, let

Uk = {σ : K(σ) ≤ − log µ(σ)− k}.

We claim that µ(JUkK) ≤ 2−k. To see this, for each σ, let τσ be such that U(τσ) = σ

and |τσ| ≤ − log µ(σ)− k. Then

µ(JUkK) ≤
∑
σ∈Uk

µ(σ) =
∑
σ∈Uk

2log µ(σ) ≤
∑
σ∈Uk

2−|τσ |−k ≤ 2−k
∑

τ∈dom(U)

2−|τ | ≤ 2−k.

Setting Uk := JUkK, it follows that {Ui}i∈ω is a µ-Martin-Löf test. Now given X ∈ 2ω

such that

(∀k)(∃n)[K(X�n) ≤ − log µ(X�n)− k],
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it follows that X ∈ ⋂i∈ω Ui, and hence X /∈ MLRµ.

(⇐) For this direction, we use the Machine Existence Theorem. If X ∈ 2ω is

not µ-Martin-Löf random, then there is some µ-Martin-Löf test {Ui}i∈ω such that

A ∈ ⋂i Ui. For each i ∈ ω, let Ui ⊆ be a prefix-free set of strings such that JUiK = Ui.

Then we set

W = {(d− log µ(σ)e − k, σ) : k ≥ 1 ∧ σ ∈ U2k}.

W is a bounded request set, since it is c.e. and

∑
(n,τ)∈W

2−n =
∑
k≥1

∑
σ∈U2k

2−d− log µ(σ)e+k ≤
∑
k≥1

∑
σ∈U2k

2kµ(σ)

≤
∑
k≥1

2kµ(U2k) ≤
∑
k≥1

2k2−2k ≤ 1.

Thus by the Machine Existence Theorem, there is some prefix-free machine M such

that for each (n, σ) ∈ W , there is some τ such that |τ | = n and M(τ) = σ. In

particular, since for every k there is some n such that A�n ∈ U2k, it follows that

KM(A�n) ≤ d− log µ(A�n)e − k ≤ − log µ(A�n)− k + 1.

2.5.1.4 Examples of Martin-Löf Random Sequences

We can provide several examples of Martin-Löf random sequences that will be

useful in the sequel.
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Example 2.39. Let U be a universal prefix-free Turing machine.

ΩU :=
∑

σ∈dom(U)

2−|σ|.

In what follows, we will fix an underlying universal prefix-free machine U and write

Ω := ΩU . For a proof that Ω ∈ MLR, see [DH10, Theorem 6.1.3]. Some other facts

about Ω are as follows:

(i) Ω ≡T ∅′;

(ii) Ω is left-c.e., meaning that it is the limit of a computable non-decreasing se-

quence of rationals;

(iii) every left-c.e. Martin-Löf random sequence is equal to ΩU for some universal

prefix-free machine U .

Example 2.40. There is an incomplete ∆0
2 Martin-Löf random sequence. If we let

Ûi be the ith member of the universal Martin-Löf test, then P̂i = Û ci is a Π0
1 class

containing only Martin-Löf random sequences. Thus, by the Low Basis Theorem,

there is some low X ∈ P̂i, which is thus ∆0
2 and incomplete.

Example 2.41. There is a Martin-Löf random sequence of hyperimmune-free degree.

If P is a Π0
1 class consisting entirely of Martin-Löf random sequences (such as the one

from the previous example), then by the Hyperimmune-Free Basis Theorem, there

is some X ∈ P that has hyperimmune-free degree.

41



2.5.1.5 Comparing the Classes MLRµ

Let µ be a computable measure, and let {pσ}σ∈2<ω be the collection of conditional

probabilities given by µ, i.e.,

pσ =
µ(σ0)

µ(σ)

for every σ ∈ 2<ω. Given that µ is computable, it follows that {pσ}σ∈2<ω is a

uniformly computable collection of real numbers. Note further that µ is positive if

and only if pσ ∈ (0, 1) for every σ ∈ 2<ω. Further, if pσ ∈ Q2 for every σ ∈ 2<ω, then

µ is exactly computable.

Definition 2.42. Let µ, ν ∈Mc. Then

L k
µ/ν := {X ∈ 2ω : sup

n∈ω

µ(X�n)

ν(X�n)
≥ k}

and

L∞
µ/ν :=

⋂
k∈ω

L k
µ/ν .

Proposition 2.43 (Bienvenu, Merkle). For µ, ν ∈Mc,

MLRµ = MLRν if and only if L∞
µ/ν ∩MLRµ = L∞

ν/µ ∩MLRν = ∅.

Lemma 2.44. If µ and ν are positive, computable measures such that {pσ}σ∈2<ω and

{qσ}σ∈2<ω are the conditional probabilities given by µ and ν, respectively, then if for

every σ ∈ 2<ω we have

1.
pσ
qσ
≤ 2(2−|σ|),
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2.
qσ
pσ
≤ 2(2−|σ|),

3.
1− pσ
1− qσ

≤ 2(2−|σ|), and

4.
1− qσ
1− pσ

≤ 2(2−|σ|),

then MLRµ = MLRν.

Proof. First observe that for any X ∈ 2ω,

µ(X�n+ 1) =
µ(X�1)

µ(∅)

µ(X�2)

µ(X�1)
· · · µ(X�n+ 1)

X�n

=

( ∏
{k<n:X(k+1)=0}

pX�k

)( ∏
{k<n:X(k+1)=1}

1− pX�k

) (2.3)

Similarly,

ν(X�n+ 1) =

( ∏
{k<n:X(k+1)=0}

qX�k

)( ∏
{k<n:X(k+1)=1}

1− qX�k

)
. (2.4)

By (2.3), (2.4), and conditions 1 and 2 from the statement of the Lemma, it follows

that

µ(X�n+ 1)

ν(X�n+ 1)
=

( ∏
{k<n:X(k+1)=0}

pX�k

qX�k

)( ∏
{k<n:X(k+1)=1}

1− pX�k

1− qX�k

)
≤
∏
k≤n

22−k .

It follows that

sup
k∈ω

µ(X�n+ 1)

ν(X�n+ 1)
≤ sup

k∈ω

∏
k≤n

22−k ≤
∏
k∈ω

22−k = 2
∑
k∈ω 2−k = 2.
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and thus L∞
µ/ν = ∅. Similarly, it follows from (2.3), (2.4), and Conditions 3 and 4

from the statement of the Lemma that

sup
k∈ω

ν(X�(n+ 1))

µ(X�(n+ 1))
≤ 2,

and hence L∞
ν/µ = ∅. Consequently, we have

L∞
µ/ν ∩MLRµ = L∞

ν/µ ∩MLRν = ∅,

and so by Proposition 2.43, we have MLRµ = MLRν .

Theorem 2.45. For every positive µ ∈Mc, there is an exactly computable ν ∈Mc

such that MLRµ = MLRν.

Proof. Let {pσ}σ∈2<ω be the collection of conditional probabilities given by µ, for each

σ ∈ 2<ω, where pσ ∈ (0, 1) for every σ ∈ 2<ω, since µ is positive. Since {pσ}σ∈2<ω

is uniformly computable, we can approximate pσ from below via {pσ,s}s∈ω, where

pσ,s ∈ Q2 for every s ∈ ω.

Now, we claim that there is a computable function f : 2<ω → ω such that for

every σ ∈ 2<ω,

pσ
pσ,f(σ)

≤ 2(2−|σ|) and
1− pσ,f(σ)

1− pσ
≤ 2(2−|σ|).

Given σ ∈ 2<ω, to define f(σ), look for the least s such that

pσ
pσ,s
≤ 2(2−|σ|), (2.5)
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which must exist since pσ,t ≤ pσ for all t ∈ ω. Note that

pσ
pσ,s
≤ 2(2−|σ|) ⇒ (∀t ≥ s)

pσ
pσ,t
≤ 2(2−|σ|),

for by Equation (2.5) and the fact that {pσ,s} is non-decreasing in s,

pσ ≤ 2(2−|σ|)pσ,s ≤ 2(2−|σ|)pσ,t

for any t ≥ s. Now, look for the least s′ ≥ s such that

1− pσ,s′
1− pσ

≤ 2(2−|σ|),

Such a t must exist since (i) 1− pσ ≤ 1− pσ,t for all t ∈ ω and (ii)

{
1− pσ,t
1− pσ

}
t∈ω

is

non-increasing, which can be routinely verified.

Now, setting f(σ) = s′ and qσ := pσ,f(σ) for each σ ∈ 2<ω, we claim that {pσ)σ∈2<ω

and {qσ}σ∈2<ω satisfy the four conditions of Lemma 2.44:

1.
pσ
qσ

=
pσ

pσ,f(σ)

≤ 2(2−|σ|) by the definition of f ;

2.
qσ
pσ

=
pσ,f(σ)

pσ
≤ 1 ≤ 2(2−|σ|);

3.
1− pσ
1− qσ

=
1− pσ

1− pσ,f(σ)

≤ 1 ≤ 2(2−|σ|); and

4.
1− qσ
1− pσ

=
1− pσ,f(σ)

1− pσ
≤ 2(2−|σ|) by the definition of f .

Letting ν be the measure defined in terms of the conditional probabilities {qσ}σ∈2<ω ,

it thus follows from Lemma 2.44 that MLRµ = MLRν .
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In general, we cannot guarantee that for every µ ∈ Mc, there is some exactly

computable ν ∈ Mc such that MLRµ = MLRν . To show this, we use the following

lemma.

Lemma 2.46 (Bienvenu, Merkle). For µ, ν ∈ Mc, MLRµ = MLRν implies that

µ(σ) > 0 if and only if ν(σ) > 0 for every σ ∈ 2<ω.

Proposition 2.47. There is µ ∈ Mc that is not positive such that for any exactly

computable measure ν, MLRµ 6= MLRν.

Proof. For each i ∈ ω, define τi := 0i1. Then we define a computable measure µ on

{τi} as follows. Let

S = {〈i, s〉 : (∃s)φi,s(i)↓ ∧ φi,s−1(i)↑}.

On the assumption that for each s there is at most one i ∈ ω with 〈i, s〉 ∈ S, let

S∗ = {s : ∃i〈i, s〉 ∈ S}.

Since by the convention that φi,s(i)↓ implies that i ≤ s, S∗ is a computable set and

thus can be listed as

S∗ = {s1 < s2 < . . . }

Then we define

µ(τi) =

 2−k if 〈i, sk〉 ∈ S

0 otherwise
.

Moreover, we define µ(τ_i σ) = 2−σµ(τi) for every i ∈ ω and σ ∈ 2<ω.
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Now suppose there is some exactly computable ν ∈Mc such that MLRµ = MLRν .

Then by Lemma 2.46, µ(τi) > 0 if and only if ν(τi) > 0. This implies that

φi(i)↓ if and only if ν(τi) > 0,

but since ν is exactly computable, the relation on the right-hand side of the bi-

conditional is a computable relation, contradicting the unsolvability of the halting

problem.

2.5.2 Weaker Definitions of Algorithmic Randomness

Now we consider definitions of algorithmic randomness that are strictly weaker

than Martin-Löf randomness, in the sense that every Martin-Löf random sequence

is counted as random according to these definitions, but additional sequences are

counted as random as well.

2.5.2.1 Computable Randomness

Computably random sequences are those sequences on which no computable mar-

tingale succeeds.

Definition 2.48. A martingale d is computable if the collection of left-cuts given by

the values {d(σ)}σ∈2<ω is a uniformly computable collection of rationals.

Example 2.49. Given positive µ ∈ Mc, then for every ν ∈ Mc, the function dν :

2<ω → R≥0 defined by

dν(σ) =
ν(σ)

µ(σ)
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for every σ ∈ 2<ω is a computable µ-martingale. Conversely, for every computable

µ-martingale d, there is some ν ∈Mc such that d =
ν

µ
.

Without loss of generality, we can restrict our attention to exactly computable

martingales, where a martingale d is exactly computable if d is computable as a

function from 2<ω to Q2.

Proposition 2.50. For every exactly computable µ ∈Mc and every computable µ-

martingale d, there is an exactly computable µ-martingale d′ such that for every X,

X ∈ Sd if and only if X ∈ Sd′.

Proof Idea. Define d′ so that d(σ) ≤ d′(σ) ≤ d(σ) + 2. The full proof is a slight

modification of the proof of Theorem 7.3.8. of [Nie09].

Definition 2.51. X ∈ 2ω is µ-computably random if there is no computable µ-

martingale d that succeeds on X. The collection of µ-computably random reals will

be written as CRµ (unless µ = λ, in which case we will simply write CR).

Since every computable µ-martingale is a c.e. µ-martingale, it follows that

MLRµ ⊆ CRµ. However, in general, the reverse containment does not hold.

Theorem 2.52. There exists X ∈ CR \MLR.

Proof. See [Nie09], Section 7.4.

In fact, we can find computably random sequences that aren’t Martin-Löf random

in every high degree.

Theorem 2.53 ([NST05]). For every high degree a, there is some X ∈ CR \ MLR

such that X ∈ a.
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Proof. See [Nie09], Section 7.5.

2.5.2.2 Schnorr Randomness

Schnorr randomness is another definition of randomness that results from slightly

perturbing the definition of Martin-Löf randomness.

Definition 2.54. Given a computable measure µ, a µ-Schnorr test is a uniformly

computable sequence {Ui}i∈ω of effectively open classes in 2ω such that µ(Ui) = 2−i

for every i ∈ ω. Further, a real x is µ-Schnorr if for every µ-Schnorr test {Ui}i∈ω, we

have x /∈ ⋂i∈ω Ui. The collection of µ-Schnorr random reals will be written as SRµ

(unless µ = λ, in which case we will simply write SR).

An alternative formulation of Schnorr randomness can be given in terms of com-

putable martingales. To prove this, we first need a lemma.

Lemma 2.55. For µ ∈Mc, X ∈ SRµ if and only if for every uniformly computable

sequence (Dn)n∈ω of finite sets of strings such that µ(JDnK) ≤ 2−n, X is contained

in JDnK for at most finitely many n.

Proof. The proof is a straightforward generalization of the proof of Lemma 1.5.9 in

[Bie08].

Theorem 2.56. For µ ∈ Mc, X ∈ SRµ if and only if there is no computable µ-

martingale d and no computable order g : ω → ω such that

d(X�n) ≥ g(n)
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for infinitely many n ∈ ω

Proof. See [Bie08], Theorem 1.5.10.

It’s not hard to see that CRµ ⊆ SRµ, but again, the reverse containment does not

hold in general.

Theorem 2.57. There is some X ∈ SR \ CR.

Proof. See [Nie09], Theorem 7.5.10.

As with members of CR \ MLR, we can find members of SR \ CR in every high

degree.

Theorem 2.58 ([NST05]). For every high degree a, there is some X ∈ SR\CR such

that X ∈ a.

In fact, being high is also necessary for being a member of SR \MLR.

Proposition 2.59 ([NST05]). For every µ ∈ Mc and every X ∈ 2ω, if X ∈ SRµ \

MLRµ, then X has high Turing degree.

To prove this proposition, we rely on the following well-known result.

Proposition 2.60. X ∈ 2ω has high Turing degree if and only if there is some

f ≤T X that dominates all computable functions. That is, for every computable

function g,

(∃m)(∀n ≥ m)g(n) ≤ f(n).
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Proof of Proposition 2.59. Since X ∈ SRµ \MLRµ, let {Ui}i∈ω be a µ-Martin-Löf test

such that X ∈ ⋂i∈ω Ui. We define an X-computable function f : ω → ω as follows.

For each n ∈ ω, let

f(n) = the least s such that (∃k)JX�kK ⊆ Un,s.

Clearly f ≤T X. Now suppose there is some computable function g such that

(∃∞n)f(n) < g(n).

Then setting Vi := Ui,g(i), it follows that

(i) Vi is the set of extensions of a finite collection of finite strings,

(ii) µ(Vi) ≤ 2−i, and

(iii) X ∈ Vi for infinitely many i.

Then by Lemma 2.55, it follows that X ∈ SRµ, contradicting our hypothesis. It thus

follows that f dominates all computable functions.

Corollary 2.61. For every X ∈ 2ω, if X ∈ CRµ \ MLRµ, then X has high Turing

degree.

2.5.2.3 Kurtz Randomness

Kurtz randomness is yet another definition of algorithmic randomness that has

been studied. Unlike the other definitions we have encountered so far, Kurtz random-
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ness includes a number of sequences that fail a number of basic statistical properties

that hold of most sequences such as the Law of Large Numbers, which we will discuss

shortly.

Definition 2.62. For µ ∈Mc, X ∈ 2ω is µ-Kurtz random, denoted X ∈ KRµ, if for

every Π0
1 class P such that µ(P) = 0, X /∈ P .

As above, KR denotes the collection of λ-Kurtz random sequences. Like the other

definitions of randomness we have considered, Kurtz randomness can be defined in

terms of martingales.

Theorem 2.63. For µ ∈ Mc, X ∈ KRµ if and only if there is no computable µ-

martingale d and no computable order g : ω → ω such that

d(X�n) ≥ g(n)

for every n ∈ ω

Proof. See, for instance, [Bie08], Theorem 1.5.12.

The notion of martingale success in the definition of Kurtz randomness is stronger

than that for Schnorr randomness, from which it follows that SRµ ⊆ KRµ. However,

the converse does not hold in general. We show this indirectly.

Definition 2.64. X ∈ 2ω is weakly 1-generic, denoted X ∈ WG, if for every dense

Σ0
1 S ⊆ 2ω, X ∈ S.

Recall that S ⊆ 2ω is dense if S meets every non-empty open subset of 2ω.
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Proposition 2.65. For every positive µ ∈Mc, WG ⊆ KRµ.

Proof. If P is a Π0
1 class such that µ(P) = 0, then U = Pc is a Σ0

1 class such that

µ(U) = 1. Since µ is positive, for any σ ∈ 2<ω we have µ(σ) > 0, and hence

U ∩ JσK 6= ∅. This implies that U is dense in 2ω. The result now immediately

follows.

A sequence X ∈ 2ω satisfies the Law of Large Numbers if

lim
n→∞

{i < n : X(i) = 1}
n

=
1

2
.

That is, in the limit, the number of 0s and 1s in X are equal to 1
2
.

Proposition 2.66. WG ∩ SR = ∅.

Proof Sketch. This follows from the fact that every weakly 1-generic sequence fails

to satisfy the Law of Large Numbers (as the property of having sufficiently more 0s

than 1s is dense) , while every Schnorr random sequence satisfies this law, as we can

build a Schnorr test for this property.

2.5.3 Stronger Definitions of Randomness

We now turn to the definitions of randomness that are strictly stronger than

Martin-Löf randomness, i.e. those definitions D with the property that every D-

random sequence is Martin-Löf random, but not vice versa.
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2.5.3.1 Weak 2-Randomness

Definition 2.67. For µ ∈ Mc, X ∈ 2ω is µ-weakly 2-random, denoted X ∈ W2Rµ,

if for every Π0
2 class P such that µ(P) = 0, X /∈ P .

It is immediate that W2Rµ ⊆ MLRµ, since the collection of sequences captured

by a µ-Martin-Löf defines a Π0
2 set of µ-measure zero. However, the converse does

not hold, as we now show.

Definition 2.68. X, Y ∈ 2ω form a minimal pair in the Turing degrees if A <T X

and A <T Y implies that A ≡T ∅.

Theorem 2.69 (Downey, Nies, Weber, Yu [DNWY06]; Hirschfeldt, Miller). For

µ ∈ Mc, if X is not computable, then X ∈ W2Rµ if and only if X ∈ MLRµ and X

and ∅′ form a minimal pair.

Note that this result and the fact that there are ∆0
2 sequences in MLR immediately

implies that MLR 6= W2R. Theorem 2.69 follows from the next two theorems.

Theorem 2.70 (Downey, Nies, Weber, and Yu [DNWY06]). For µ ∈ Mc, if X ∈

W2Rµ and X is not computable, then X and ∅′ form a minimal pair.

Proof Sketch. We modify the proof given by Downey, Nies, Weber, and Yu for the

case that µ = λ. If A ∈ 2ω is ∆0
2, Z ∈ W2Rµ, and ΦZ = A for some Turing functional

A, then we argue that A is computable. Towards this end, we define

S = {X : ∀n∀s∃t > s(ΦX(n)[t]↓ = At(n)},
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which is Π0
2 and contains Z. Since Z ∈ W2Rµ, it follows that µ(S) > 0. Now the

only difference between the original proof and the situation here is that µ may be

atomic, so that there is some µ-atom Y ∈ S. But since µ is computable, it follows

that Y is computable. Then ΦY = A, and hence A is computable.

In the case that S contains no atoms, the proof proceeds exactly as in the case of

the Lebesgue measure: by a “majority vote” argument, which shows that that one

can compute values of A using the majority of sequences in a set of positive measure,

one shows that A is computable. See, for instance, the proof of Theorem 7.2.8. in

[DH10] for the details.

Theorem 2.71. [Hirschfeldt, Miller] Let µ ∈ Mc. For any Σ0
3 class S ⊆ 2ω such

that µ(S) = 0, there is a noncomputable c.e. set A such that A ≤T X for every

non-computable X ∈ MLRµ ∩ S.

Proof Sketch. The proof proceeds exactly in the case as the case of the Lebesgue

measure, since X ∈ MLRµ ∩ S implies that µ(X) = 0 and hence X is not a µ-atom.

See the proof of Theorem 7.2.11 of [DH10].

Proof of Theorem 2.69. (⇒) This is simply Theorem 2.70.

(⇐) Suppose that X ∈ MLRµ \W2Rµ. Then there is a Π0
2 µ-null set S such that

X ∈ S, and so by Theorem 2.71, there is some noncomputable c.e. set A such that

A ≤T X. Therefore, X and ∅′ do not form a minimal pair.

2.5.3.2 2-Randomness and n-randomness

A definition of randomness slightly stronger than weak 2-randomness is 2-randomness.

In fact, for each n, we can define n-randomness.
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Definition 2.72. For µ ∈Mc and A ∈ 2ω, a µ-Martin-Löf test relative to a A is a

uniformly A-computable sequence {UAi }i∈ω of A-effectively open classes in 2ω such

that µ(UAi ) ≤ 2−i for every i ∈ ω. Further, a real X is µ-Martin-Löf random relative

to A, denoted MLRAµ if for every µ-Martin-Löf test {UAi }i∈ω relative to A, we have

X /∈ ⋂i∈ω UAi .

The following is immediate.

Lemma 2.73. If A ≡T B, then MLRA = MLRB.

Definition 2.74. For µ ∈ Mc, X ∈ 2ω is 2-random with respect to µ, denoted

X ∈ 2MLRµ, if X is µ-Martin-Löf random relative to ∅′. Moreover, X is n-random

with respect to µ, denoted X ∈ nMLRµ, if X is µ-Martin-Löf random with respect

to ∅(n−1).

In Subsubsection 2.5.1.3, we considered Theorem 2.33, Martin-Löf’s result that

(∃∞n)[C(X�n) ≥ n−O(1)].

implies that X ∈ MLR. A partial converse was only recently obtained by Nies,

Stephan, and Terwijn, and independently by Miller.

Theorem 2.75 ([Mil04], [NST05]). X ∈ 2MLR if and only if

(∃∞n)[C(X�n) ≥ n−O(1)].

Proof. See, for instance, [DH10], Theorem 6.11.6.
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2.5.4 An Open Case: Kolmogorov-Loveland Randomness

One important definition whose relationship to Martin-Löf randomness is still

an open question is Kolmogorov-Loveland ranodmness. The basic idea behind this

definition is that we allow a betting strategy to proceed non-monotonically, meaning

that we need not bet along initial segments of sequences, but at different locations de-

termined by the betting strategy, and not necessarily at strictly increasing locations.

The following definitions are necessary to define Kolmogorov-Loveland randomness.

Definition 2.76. An assignment is a sequence (which may be finite or infinite)

x = (r0, a0), (r1, a1), . . . , (rn−1, an−1), . . .

of pairs, where for each i, ri ∈ ω and ai ∈ {0, 1}.

We let FA denote the set of all finite assignments. Given an assignment

x = (r0, a0), (r1, a1), . . . , (rn−1, an−1), . . . , the domain of x, written dom(x), is the

set {r0, r1, . . . }.

Definition 2.77. A scan rule is a partial function S : FA→ ω such that

(∀x ∈ FA)(S(x) /∈ dom(x)).

Definition 2.78. Given a scan rule S and a real X ∈ 2ω, the assignment given by

S, denoted σXS , is defined as follows:

(i) Let σXS (0) = ∅.
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(ii) If xn = σXS (n) and S(xn) are both defined, we let

σXS (n+ 1) = xn
_(S(xn), X(S(xn))).

(iii) If either xn = σXS (n) or S(xn) are undefined, then σXS (n + 1) is undefined as

well.

Given a scan rule S and a real X, if

σXS = (r0, a0), (r1, a1), . . . , (rn−1, an−1), . . .

then we let S(X) denote the string whose nth bit is the nth bit of X scanned by

S, i.e. S(X)(i) = ai. If σXS is an infinite assignment, then S(X) ∈ 2ω. Otherwise,

S(X) ∈ 2<ω. Further, if σXS (n) is defined, we let S(X,n) be the string of length n

such that S(X,n)(i) = ai for i ∈ {0, . . . , n− 1}. It follows that if σXS is infinite, then

S(X,n) ≺ S(X) for all n.

We next define the “stake” function. This is the function that determines how

much of our capital we are to bet on our guess.

Definition 2.79. A stake function is a partial function Q : FA→ [0, 2].

Having defined both the scan rules and the stake functions, we can now define

non-monotonic betting strategies.

Definition 2.80. A non-monotonic betting strategy is a pair B = (S,Q), where S

is a scan rule and Q is a stake function, that bets on a real X ∈ 2ω as follows: B

58



determines a payoff function pXB : ω → [0, 2] and a capital function cXB : ω → R+∪{0},

where

pXB (n+ 1) =

 Q(σXS (n)) if S(X)(n) = 0

2−Q(σXS (n)) if S(X)(n) = 1

and

CX
B (n) = CX

B (0)
n∏
i=1

pXB (i),

where CX
B (0) is the initial capital of the betting strategy B.

Now, we define what it means for a non-monotonic betting strategy to “succeed”

on a real X:

Definition 2.81. A non-monotonic betting strategy B succeeds on X ∈ 2ω if

lim sup
n→∞

CX
B (n) =∞.

In order for us to define a notion of randomness in terms of non-monotonic betting

strategies, we need to consider the effectivized versions of these strategies. A partial

computable non-monotonic betting B = (S,Q) strategy is one in which the scan rule

S and the stake function Q are partial computable functions, and the range of Q is

Q ∪ [0, 2]. We now give the associated definition of randomness.

Definition 2.82. A real X is Kolmogorov-Loveland random, denoted X ∈ KLR, if

there is no partial computable non-monotonic betting strategy that succeeds on X.

Muchnik, Semonov, and Uspensky were able to show that Martin-Löf randomness

is sufficient for Kolmogorov-Loveland randomness.
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Theorem 2.83 ([MSU98]). MLR ⊆ KLR

Whether the converse holds is one of the most important open questions in the

theory of algorithmic randomness.

Question 2.84. Is there some X ∈ KLR \MLR?

For our purposes, the following result will be useful.

Proposition 2.85 ([Mer03]). X ∈ KLR if and only if no total computable non-

monotonic betting strategy succeeds on X.

2.6 Several Useful Theorems

We conclude this chapter with several theorems concerning Martin-Löf random-

ness with respect to the Lebesgue measure. First, van Lambalgen’s Theorem gives

us conditions under which the join X ⊕ Y of two Martin-Löf random sequences is

also Martin-Löf random.

Theorem 2.86 (van Lambalgen’s Theorem). For X, Y ∈ 2ω,

X ⊕ Y ∈ MLR⇔ (X ∈ MLRY ∧ Y ∈ MLR).

Proof. See [Nie09], Theorem 3.4.6.

Corollary 2.87. X ∈ 2MLR if and only if X ∈ MLR and Ω ∈ MLRX .
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Proof.

X ∈ 2MLR⇔ X ∈ MLR∅
′

(by definition of 2MLR)

⇔ X ∈ MLRΩ (since ∅′ ≡T Ω)

⇔ X ⊕ Ω ∈ MLR (by van Lamgalgen’s Theorem)

⇔ Ω ∈ MLRX ∧ X ∈ MLR. (by van Lamgalgen’s Theorem)

If we define Low(Ω) to be the set {X ∈ 2ω : Ω ∈ MLRX}, then Corollary 2.87

yields

Low(Ω) ∩MLR = 2MLR.

Lastly, we have the surprising result that every X ∈ 2ω is Turing reducible to

a Martin-Löf random sequence. In fact, we can computably bound the use of this

reduction.

Theorem 2.88 (The Kučera-Gács Theorem, [Kuč85], [Gác86]). For every X ∈ 2ω,

there is some A ∈ MLR such that X ≤wtt A.

Proof. See [Nie09], Section 3.3.
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CHAPTER 3

THE FUNCTIONAL EXISTENCE THEOREM

3.1 Introduction

3.1.1 Motivation

As motivation for the Functional Existence Theorem, let us first consider the dis-

tinction between semimeasures on 2<ω and 2ω. As the name suggests, a semimeasure

can be seen as a defective measure. Whereas a probability measure π : 2<ω → [0, 1]

on ω must satisfy ∑
n∈ω

π(n) = 1,

a discrete semimeasure on 2<ω is simply a function m : 2<ω → [0, 1] on 2<ω satisfying

∑
n∈ω

m(n) ≤ 1.

Similarly, whereas a probability measure µ : 2ω → [0, 1] on 2ω must satisfy

µ(∅) = 1 and µ(σ) = µ(σ0) + µ(σ1)
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for every σ ∈ 2<ω, a continuous semimeasure on 2ω is a function δ : 2ω → [0, 1]

satisfying

δ(∅) ≤ 1 and δ(σ) ≥ δ(σ0) + δ(σ1)

for every σ ∈ 2<ω.1

Here we are particularly interested in computably enumerable discrete and con-

tinuous semimeasures. Paradigm examples of both discrete and continuous semimea-

sures arise by feeding a Turing machine or Turing functional with a randomly gen-

erated input.

Example 3.1. Given a prefix-free Turing machine T : 2<ω → 2<ω, if we generate a

binary string by repeated tosses of a fair coin and feed this string into our machine

T until it accepts the string (unless it never accepts the string), then the function

mT : 2<ω → [0, 1] defined by

mT (σ) =
∑

T (τ)↓=σ

2−|τ |

is the probability that the string generated by the tosses of our coin will be accepted

by T and mapped to σ. Since

∑
σ∈2<ω

mT (σ) =
∑
σ∈2<ω

∑
T (τ)↓=σ

2−|τ | =
∑

τ∈dom(T )

2|−τ | ≤ 1,

where inequality holds because T is prefix-free, it follows that mT is a discrete

1For sake of brevity, we write δ(σ) instead of δ(JσK).
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semimeasure.2

Example 3.2. Given a Turing functional Φ : 2ω → 2ω, we can generate a binary

sequence by repeated tosses of a fair coin and feed this string into our functional,

outputting longer and longer initial segments of a output sequence as we feed longer

and longer initial segments of a input sequence. If we set

PreΦ(σ) := {τ ∈ 2<ω : Φτ � σ ∧ (∀τ ′ ≺ τ)Φτ ′ 6� σ},

then the function δΦ : 2<ω → [0, 1] defined by

δΦ(σ) =
∑

τ∈PreΦ(σ)

2−|τ | = λ(JPreΦ(σ)K)

is the probability that an initial segment of the sequence generated by the tosses of

our coin will be accepted by Φ and mapped to an extension of σ. Now since PreΦ(σ)

is a prefix-free set for each σ ∈ 2<ω, it follows that

δΦ(∅) = λ(JPreΦ(σ)K) ≤ 1.

Moreover, since

JPreΦ(σ)K ⊇ JPreΦ(σ0)K ∪ JPreΦ(σ1)K, 3

2Moreover, if we define the semimeasure mU in terms of a universal prefix-free Turing machine,
then ∑

σ∈2<ω

mU (σ) = ΩU ,

Chaitin’s Ω. This is why Ω is sometimes referred to as a halting probability.

3We need not have equality here, since Φ might map some τ to σ while being undefined on all
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it follows that

δΦ(σ) ≥ δΦ(σ0) + δΦ(σ1)

for every σ ∈ 2<ω. Thus

3.1.2 The Machine Existence Theorem and Discrete Semimeasures

As discussed in the previous chapter, The Machine Existence Theorem provides a

recipe for building a prefix-free Turing machine M whenever we are given a bounded

c.e. list of requests (n, τ); that is, the collection of requests W ⊆ ω×2<ω is such that

∑
(n,τ)∈W

2−n ≤ 1,

where each (n, τ) is a request that the machine we are building map some string of

length n to the string τ . More precisely, the theorem states that given a bounded

request set W ⊆ ω× 2<ω, there is a prefix-free Turing machine M such that for each

(n, τ) ∈ W , there is some σ ∈ dom(M) such that |σ| = n and M(σ) = τ . This in

turn implies that

KM(τ) ≤ |σ|

and hence that

K(τ) ≤ |σ|+O(1).

For our purposes, it’s important to note that a bounded request set is essentially

a discrete semimeasure. Given a bounded request set W , we can define a discrete

extensions of τ ; more formally, it may be that (τ, σ) ∈ Φ but for all τ ′ � τ , there is no σ′ ∈ 2<ω

such that (τ ′, σ′) ∈ Φ.
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semimeasure mW by

mW (τ) :=
∑

(n,τ)∈W

2−n.

Seen in this way, the Machine Existence Theorem tells us that every discrete semimea-

sure can be seen as providing the probability that a machine with randomly generated

input will accept the input and output a given string. That is, every c.e. discrete

semimeasure is an instance of the paradigm example of a c.e. discrete semimeasure

given in Example 1 above.

3.1.3 An Analogue for Continuous Semimeasures?

This fact about c.e. discrete semimeasures suggests that every c.e. continuous

semimeasure may be an instance of the paradigm example of a c.e. continuous

semimeasure given in Example 2 above. The main result in this chapter says that

this is true. Toward this end, we prove an analogue of the Machine Existence The-

orem for Turing functionals Φ : 2ω → 2ω, which we refer to appropriately enough

as the Functional Existence Theorem. We should note that this result is implicit in

early work of Levin and Zvonkin [ZL70], and more recently, Day proved a similar

theorem, from which he derived many of the results in Section 3.3. See [Day10] for

more details.
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3.2 The Construction

3.2.1 A General Overview

Unlike the Machine Existence Theorem, our requests are pairs (q, τ), where

q ∈ Q2 and τ ∈ 2<ω. To fulfill a request (q, τ), we define the functional Φ so that

it maps to τ a finite collection of strings {σ1, σ2, . . . , σk} such that λ(
⋃
i≤kJσiK) = q.

Moreover, unlike the Machine Existence Theorem, we don’t require that the total

weight of our requests be bounded by 1, but rather that for each n, the total weight

of our requests for strings of length n be bounded by 1. That is, if V ⊆ Q2 × 2<ω is

the set of requests, then for each n

∑
τ∈2n

∑
(q,τ)∈V

q ≤ 1. (3.1)

In the following, the set V will be called a bounded functional request set.

Next, since we are enumerating a functional Φ, we need to ensure that it is

consistent; that is, if Φσ � τ and σ′ � σ, then Φσ′ � τ . Moreover, we must require

that the weight of requests for a fixed string σ not be exceeded by the sum of the

weights of its extensions σ0 and σ1. To put it formally, if the V -weight of σ is defined

to be

wtV (σ) :=
∑

(q,σ)∈V

q,

then for every σ ∈ 2<ω, we must satisfy the requirement

wtV (σ) ≥ wtV (σ0) + wtV (σ1). (3.2)
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It immediately follows from Equations 1 and 2 above that wtv is a continuous

semimeasure.

We now prove that if the above listed conditions hold, then there is a Turing

functional Φ such that for every σ ∈ dom(wtV ), the amount of measure mapped into

σ by Φ, λ(JPreΦ(σ)K), is precisely the amount requested, wtV (σ).

3.2.2 The Formal Details

The full statement of the Functional Existence Theorem is as follows.

Theorem 3.3. Suppose V ⊆ Q2× 2<ω is a bounded functional request set, i.e., V is

a c.e. set of pairs (q, τ) such that for every n,

∑
τ∈2n

∑
(q,τ)∈V

q ≤ 1

and such that the V -weight function wtV satisfies

wtV (σ) ≥ wtV (σ0) + wtV (σ1)

for every σ ∈ 2<ω. Then there exists a Turing functional Φ : 2ω → 2ω such that for

each σ ∈ dom(wtV ), λ(JPreΦ(σ)K)) = wtV (σ).

The following terminology will be useful in the proof of Theorem 3.3. For σ ∈ 2<ω,

σ− denotes the initial segment of σ of length |σ| − 1; we will sometimes refer to σ−

as the parent of σ. Moreover, for τ ∈ 2<ω, τ0 and τ1 are called the children of τ ,

and τ0 and τ1 are called siblings.
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Proof. Recall from the previous chapter we define a functional Φ to be a c.e. set of

pairs of strings (σ, τ), where (σ, τ) ∈ Φ means that Φσ � τ . For s ∈ ω, Φs will denote

the collection of pairs (σ, τ) that have been enumerated into Φ by the end of stage

s. When a pair (q, τ) is enumerated into V at stage s, we will say that measure q is

requested for τ at stage s. Further, we fulfill a request (q, τ) at stage s by enumerating

a finite collection of pairs (σ1, τ), . . . , (σk, τ) into Φs such that
∑

i≤k λ(σi) = q and

each σi properly extends some string ξ such that (ξ, τ−) ∈ Φs−1, where τ− is the

string obtained by removing the final bit of τ .

For a fixed string τ ∈ 2<ω such that τ = ρ_i for some ρ ∈ 2<ω and i ∈ {0, 1},

the measure mapped to τ by (the end of) stage s is
∑

(σ,τ)∈Φs
2−|σ|, while the measure

available for τ at (the beginning of) stage s is

∑
(σ,ρ)∈Φs−1

2−|σ| −
∑

(σ′,ρ_(1−i))∈Φs−1

2−|σ
′|.

That is, the measure mapped to τ by stage s is the sum of the measure of the strings

σ such that (σ, τ) has been enumerated by the end of stage s, and the measure

available for τ at stage s is the measure mapped to the parent of τ by the end of

stage s− 1 minus the measure mapped to the sibling of τ by the end of stage s− 1.

Now, the general approach here is straightforward: for each pair (q, τ) enumerated

into V , we first wait until each of the initial segments of τ are in the range of Φ;

this is guaranteed to occur since by the hypothesis of our theorem, for each ξ ≺ τ ,

wtV (ξ) ≥ wtV (τ). Once the condition

(∀τ ′ � τ)(∃σ′)(σ′, τ ′) ∈ Φ
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has been satisfied, say by stage t, we would like to fulfill the request (q, τ) at stage

t + 1. However, there are two problems that might prevent us from immediately

mapping the requested measure’s worth of strings to τ :

(P1) The measure mapped to τ− by stage t may be less than q.

(P2) It may occur that enough measure has been mapped to τ− by stage t, but the

sibling of τ has taken some of it, so that the measure available for τ at stage

t+ 1 is less than q.

Since the weight of τ− exceeds the sum of the weight of τ and the weight of the sibling

of τ , in principle these two problems are only temporary; however, if we naively wait

until more measure is mapped to the parent τ− before we try to fulfill the request

(q, τ), it may be that in the meantime another request (q′, τ) is enumerated into V ,

so that we will now need to map measure totalling q + q′ to τ .4

The solution is not to wait to act upon a request until enough measure is available,

but to act upon whatever measure is currently available, perhaps only partially

fulfilling a request (that will be completely fulfilled eventually).

Let Vs denote the set of pairs (q, τ) enumerated into V by the end of stage s;

for convenience, we will assume that at most one pair (q, τ) is enumerated into Vs

at each stage s. Pairs that are enumerated into V but which cannot be acted upon

immediately are temporarily placed in a queue (one for each stage s), which will be

denoted by Qs.

4In the worst case, it may be that (i) the total amount of measure requested for some τ and
one of its extensions, say τ0, is q (and thus no measure is requested for τ1), (ii) that one request
(q, τ0) is made, and (iii) this requests is followed by requests of the form (2−iq, τ) for every i ∈ ω.
Thus, if we only wait to act on the request for measure to be mapped to τ0 only after the total
measure requested to be mapped to τ is q, we will wait forever.
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Let us fix a bit more terminology. We say that an enumerated request (q, τ) can

be completely fulfilled at stage s if the amount of measure available to τ at stage s

is at least q. In addition, we say that an enumerated request (q, τ) can be partially

fulfilled at stage s if there is some measure less than q available to τ at stage s. Let

us now turn to the construction.

Construction

At stage s = 0, we set Φ0 = V0 = Q0 = ∅.

At stage s+ 1, if no pair (q, τ) enters V , then we move on to stage s+ 2. Otherwise,

we will iterate the following procedure, during which we will make a finite number of

changes to the set Qs, resulting in a sequence of sets Qs = Q0
s+1, . . . , Q

N
s+1 for some

N ∈ ω. Then we will define Qs+1 := QN
s+1.

Step 1: First, given (q, τ) that has entered Vs, there are three possibilities:

(1a) no measure is available for τ ;

(1b) the measure available for τ is r < q; or

(1c) the measure available for τ is r ≥ q.

If (1a) occurs, there are two further possibilities:

(1a.i) there is no pair (r, τ) ∈ Q0
s+1(= Qs) for any r ∈ Q2; or

(1a.ii) there is some pair (r, τ) ∈ Q0
s+1 for some r ∈ Q2.

In subcase (1a.i), we add (q, τ) to the queue by defining Qs+1 = Q0
s+1 ∪ {(q, τ)}.

Then we skip Step 2 and move on the next stage. In subcase (1a.ii) we remove
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(q, τ) from the queue and replace it with (q + r, τ); that is, we define Qs+1 :=

(Q0
s+1 \ {(q, τ)})∪ {(q+ r, τ)}. Having done this, we skip Step 2 and move on to the

next stage.

If (1b) occurs, then we can only partially fulfill the request (q, τ).5 Since the

amount of measure available for τ is r, this means that there are strings σ1, . . . , σk

such that for each i ≤ k, there is a string ξ ≺ σi such that (ξ, τ−) has been

enumerated into Φt for some t ≤ s and
∑k

i=1 2−|σi| = r. We thus enumerate

the pairs (σ1, τ), . . . , (σk, τ) into Φs, and update the queue by defining Q1
s+1 :=

(Q0
s+1 \ {(q, τ)}) ∪ {(q − r, τ)}, and then we move on to the second step of the

construction.

If (1c) occurs, we carry out the same steps as we did for (1b), except that now

the request (q, τ) can be completely fulfilled, and thus we define Q1
s+1 := Q0

s+1 and

move on to the second step of this stage of the construction.

Step 2: Given Qi
s+1, we proceed as follows: We first check to see if there is any

request (q′, τ ′) ∈ Qi
s+1 that can be partially or completely fulfilled. There are two

possibilities:

(2a) No pair (q′, τ ′) ∈ Qi
s+1 can be fulfilled partially or completely; or

(2b) There is at least one pair (q′, τ ′) ∈ Qi
s+1 that can be fulfilled partially or

completely.

5As we will see, in this case, there can be no (p, τ) ∈ Qs−1, since if there were, we would have
already used the measure r available to τ to fulfill, at least partially, the request for measure p to
be mapped to τ .
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If (2a) occurs, there is no action to take, so we set Qs+1 := Qi
s+1 and move on to

the next stage of the construction.

If (2b) occurs, then there are two further possibilities:

(2b.i) there is exactly one pair (q′, τ ′) ∈ Qi
s+1 that can be partially or completely

fulfilled; or

(2b.ii) there are two pairs (q′, τ ′), (q′′, τ ′′) ∈ Qi
s+1 that can be partially or completely

fulfilled after the action we took in Step 1.

In subcase (2b.i) it must be that τ ′ is an immediate successor of a string we dealt

with in Step 1 or in the previous iteration of Step 2. For the pair (q′, τ_i), we carry

out the actions from Step 1 (where this time only cases (1b) or (1c) are possible),

except at the end of the action, we define Qi+1
s+1 just as we defined Q1

s+1.

In subcase (2b.ii), it must be that τ ′ and τ ′′ are the immediate successors of a

string we dealt with in Step 1 or in the previous iteration of Step 2 (and thus τ ′ and

τ ′′ are siblings). In this case, if we have a choice between partially satisfying both

requests or completely satisfying one of them, we always choose to partially satisfy

both requests. To do so, we split up the available measure in some effective way and

carry out the actions as in Step 1 above, and define Qi+1
s+1 as we defined Q1

s+1.

As there are at most finitely many pairs in Qs to begin with, there is some N

such that after N − 1 iterations of the procedure, we eventually arrive at case (2a)

and define Qs+1 := QN
s+1, thus ending this stage of the construction.

Verification

First, note that Φ is a consistent functional: if (σ, τ) is enumerated into Φ, by our
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construction, σ must properly extend some string ξ such that (ξ, τ−) has previously

been enumerated into Φ. Next we verify that the every request for measure is eventu-

ally fulfilled. To this end, let us define an auxiliary function wtQs(τ), the Qs-weight

of a string τ ∈ 2<ω, to be the unique q ∈ Q2 such that (q, τ) ∈ Qs, unless there is no

such q, in which case we set wtQs(τ) = 0. Thus it suffices to prove the following.

Lemma 3.4. For all strings τ ∈ 2<ω, lims→∞ wtQs(τ) = 0.

Proof. We prove this by induction on string length. First, all requests of the form

(q,∅) can be completely fulfilled as soon as they are enumerated into V , and hence

wtQs(∅) = 0 for all s. Now suppose the lemma holds for all strings of length k.

Given a string τ ∈ 2<ω of length k + 1, suppose first that lims→∞ wtQs(τ) does not

exist. Then there is some n such that

lim sup
s

wtQs(τ)− lim inf
s

wtQs(τ) >
1

n
.

This implies that there are infinitely many stages s such that for some t > s,

wtQt(τ)−wtQs ≥ 1
n
. This further implies that wtV (τ) =∞, which is impossible. So,

lims→∞ wtQs(τ) exists.

Now, suppose there is some ε > 0 such that lims→∞ wtQs(τ) > ε. It follows that

there is some stage t such that for every stage s ≥ t, wtQs(τ) > ε. By induction,

lims→∞ wtQs(τ
−) = 0, and by assumption, wtV (τ−) ≥ wtV (τ) + wtV (τ ∗), where τ ∗ is

the sibling of τ . Moreover, by our construction, we always choose to partially fulfill

requests of siblings rather than completely fulfill one or the other. This means that

there will be some stage t′ ≥ t at which enough measure will be available to τ and
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τ ∗ so that we will have wtQt′+1
(τ) < ε, contradicting our earlier assumption.

Since every request is eventually fulfilled, it is clear from the construction that

for every τ ∈ 2<ω, λ(JPreΦ(τ)K) = wtV (τ).

3.3 Applications of the Functional Existence Theorem

In this section, we will use the Functional Existence Theorem to provide a number

of characterizations of several notions of randomness. The results in this section were

obtained in collaboration with Laurent Bienvenu.

3.3.1 Measure-Boundedness

First, we characterize different notions of randomness in terms of the rate at

which Turing functionals map measure to the initial segments of sequences, results

which can be straightforwardly recast in terms of a priori complexity.

Definition 3.5. Given A ∈ 2ω, a Turing functional Φ : 2ω → 2ω is measure-bounded

along A if there is some c ∈ ω such that for every n ∈ ω,

λ(JPreΦ(A�n)K) ≤ c · λ(A�n).

Theorem 3.6. A ∈ 2ω is Martin-Löf random if and only if every Turing functional

Φ is measure-bounded along A.

To prove this theorem, we need two results. First we show that for any Turing
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functional Φ, the function

LΦ(σ) :=
λ(JPreΦ(σ)K)

λ(σ)

is a c.e. supermartingale.

Proposition 3.7. For every Turing functional Φ, LΦ : 2<ω → R≥0 is a c.e. super-

martingale.

Proof. Clearly, every real in the range of LΦ is a c.e. real, so we just need to show

that for every σ ∈ 2<ω

2LΦ(σ) ≥ LΦ(σ0) + LΦ(σ1).

As we saw in our discussion of Example 3.2,

JPreΦ(σ)K ⊇ JPreΦ(σ0)K ∪ JPreΦ(σ1)K,

It follows that

λ(JPreΦ(σ)K) ≥ λ(JPreΦ(σ0)K) ∪ λ(JPreΦ(σ1)K). (3.3)

Since 1
2
λ(σ) = λ(σ0) = λ(σ1), it follows that

2

λ(σ)
=

1

λ(σ0)
=

1

λ(σ1)
. When

combined with Equation (3), this yields

2λ(JPreΦ(σ)K)
λ(σ)

≥ λ(JPreΦ(σ0)K)
λ(σ0)

+
λ(JPreΦ(σ1)K)

λ(σ1)
.
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Next, we apply the Functional Existence Theorem to derive the following result.

Proposition 3.8. Given a c.e. supermartingale d such that d(∅) ≤ 1, there is a

Turing functional Φ such that d = LΦ

Proof. Since d is a c.e. supermartingale, d has a supermartingale approximation.

That is, there is a collection of c.e. supermartingales {di}i∈ω such that each di is

Q2-valued, for each σ ∈ 2<ω and each s,

ds(σ) ≤ ds+1(σ),

and

lim
s→∞

ds(σ) = d(σ).

We will use the supermartingale approximation of d to enumerate a bounded func-

tional request set as follows. First, we will assume that for all σ ∈ 2<ω, d0(σ) = 0.

Next, whenever we see ds(σ) 6= ds+1(σ), we will enumerate the pair

(
2−|σ|(ds+1(σ)− ds(σ)), σ

)
into our bounded functional request set V . Clearly V ⊆ Q2 × 2<ω, since each ds is

Q2-valued. Further, we have

wtV (∅) =
∑

(q,∅)∈V

q =
∑
s∈ω

(ds+1(∅)− ds(∅)) = d(∅) ≤ 1,
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where the second equality holds because

∑
s∈ω

(
ds+1(σ)− ds(σ)

)
= d(σ)

for every s ∈ 2<ω. Lastly, we have

wtV (σ) =
∑

(q,σ)∈V

q =
∑
s∈ω

2−|σ|(ds+1(σ)− ds(σ)) = 2−|σ|d(σ),

and hence

wtV (σ) = 2−|σ|d(σ) ≥ 2−|σ0|d(σ0) + 2−|σ1|d(σ1) = wtV (σ0) + wtV (σ1).

Thus, all the conditions for the Functional Existence Theorem are satisfied, and so

there is a Turing functional Φ such that

λ(JPreΦ(σ)K) = wtV (σ) = 2−|σ|d(σ).

With these two results, we are now ready to prove Theorem 4.

Proof of Theorem 4. First, suppose that A is Martin-Löf random. For a Turing

functional Φ, by Proposition 3.7, LΦ is a c.e. supermartingale, and thus there is

some constant c ∈ ω such that for all n, LΦ(A�n) ≤ c. Thus, for all n

λ(JPreΦ(A�n)K)
λ(A�n)

≤ c,
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and hence for all n

λ(JPreΦ(A�n)K) ≤ cλ(A�n).

For the other direction, if A is not Martin-Löf random, then there is some c.e.

supermartingale d that succeeds on A, i.e. for every c ∈ ω there is some n such that

d(A�n) ≥ c. Then by Proposition 3.8, there is some Turing functional Φ such that

d = LΦ, and hence for every c there is some n such that LΦ(A�n) > c, or equivalently,

for every c ∈ ω there is some n such that

λ(JPreΦ(A�n)K) > cλ(A�n).

Hence, Φ is not measure-bounded along A.

Next, we provide similar characterizations for computable randomness, Schnorr

randomness, and Kurtz randomness in terms of almost total Turing functionals

(where a Turing functional Φ is almost total if λ(dom(Φ)) = 1). We need the

following lemma for our characterizations.

Lemma 3.9. For any almost total Turing functional Φ, LΦ is a computable martin-

gale.

Proof. Since λ(dom(Φ)) = 1 implies that λ(JPreΦ(∅)K) = 1, LΦ has computable

initial capital. Now suppose that

2LΦ(σ) > LΦ(σ0) + LΦ(σ1)
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for some σ ∈ 2<ω. This implies that

λ(JPreΦ(σ)K) > λ(JPreΦ(σ0)K) + λ(JPreΦ(σ1)K)

which further implies that Φ is undefined on all the sequences in

JPreΦ(σ)K \
(
JPreΦ(σ0)K ∪ JPreΦ(σ1)K

)
.

This is a set of positive measure, contradicting the fact that Φ is almost total. Thus,

it must be the case that

2LΦ(σ) = LΦ(σ0) + LΦ(σ1).

First, we characterize computable randomness in terms of almost total function-

als.

Theorem 3.10. A ∈ 2ω is computably random if and only if every almost total

Turing functional Φ is measure-bounded along A.

Proof. First, given a computably random real A and an almost total functional Φ,

since LΦ is a computable martingale by Lemma 3.9, it follows that LΦ cannot succeed

on A. Thus there is some c such that for every n,

λ(JPreΦ(A�n)K) ≤ cλ(A�n).
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For the other direction, suppose that A is not computably random. Then there is

some computable martingale d that succeeds on A. Without loss of generality, we

can assume that d(∅) = 1. By Proposition 3.8, there is a Turing functional Φ such

that d = LΦ. All we have to verify is that the Φ is almost total. To see this, note

that since d(∅) = 1 and for each n, the measure mapped to strings of length n by Φ

is ∑
σ∈2n

2−nd(σ) = d(∅) = 1,

where the first equality follows from the martingale condition (along the lines of

Lemma 2.23). This implies that λ(Φ−1(ran(Φ))) = 1, and thus λ(dom(Φ)) = 1.

Next, we characterize Schnorr randomness and Kurtz randomness in terms of

almost total functionals. We first need to generalize what it means for a functional

Φ to be measure-bounded along a real A ∈ 2ω.

Definition 3.11. Suppose A ∈ 2ω, let Φ be a Turing functional, and let h be a

computable order h.

(i) Φ is effectively measure-bounded along A via h if there is some c ∈ ω such that

λ(JPreΦ(A�n)K) ≤ c · h(n)λ(A�n)

for every n ∈ ω.

(ii) Φ is weakly effectively measure-bounded along A via h if there is some c ∈ ω

such that

λ(JPreΦ(A�n)K) ≤ c · h(n)λ(A�n)
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for infinitely many n ∈ ω.

Theorem 3.12. (i) A ∈ 2ω is Schnorr random if and only if for every almost total

functional Φ and every computable order h, Φ is weakly effectively measure-

bounded along A via h.

(ii) A ∈ 2ω is Kurtz random if and only if for every almost total functional Φ and

every computable order h, Φ is effectively measure-bounded along A via h.

Proof. For the left-to-right direction of Part (i), given a Schnorr random real A, an

almost total Turing functional Φ, and a computable order function h, by Theorem

2.56 applied to the martingale LΦ, there is some c such that for every n,

LΦ(A�n) ≤ c · h(n)

for every n, and hence by choosing c′ sufficiently large, we have

λ(JPreΦ(A�n)K) ≤ c′ · h(n)λ(A�n)

for every n.

For the right-to-left direction of part (i), suppose there is some computable mar-

tingale d and a computable order h such that for every c ∈ ω, there is some n such

that

d(A�n) > c · h(n)

for infinitely many n, where d(∅) = 1. Then by Proposition 3.7 and Lemma 3.9,

there is an almost total Turing functional Φ such that d = LΦ. Thus, for every c ∈ ω,
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there is some n such that

LΦ(A�n) > c · h(n),

so

λ(JPreΦ(A�n)K) > c · h(n)λ(A�n).

The proof of (ii) is very similar. For the left-to-right direction, we merely need

to replace all instances of “every n” with “infinitely many n” in the proof of the

left-to-right direction of Part (i).

For the right-to-left direction, suppose that there exist a computable martingale

d and a computable order h such that for every c ∈ ω, there is some N ∈ ω such

that for every n ≥ N ,

d(A�n) > c · h(n).

Again by Proposition 3.7 and Lemma 3.9, there is an almost total Turing functional

Φ such that d = LΦ, and thus

LΦ(A�n) > c · h(n).

Thus, for every c ∈ ω, there is some N ∈ ω such that for every n ≥ N ,

λ(JPreΦ(A�n)K) > c · h(n)λ(A�n).
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3.3.2 Characterizing Notions of Randomness via Truth-Table Functionals

As we saw in the proof of Proposition 2.50, for every computable martingale d

there is an exactly computable martingale d′ such that for every σ ∈ 2<ω, d(σ) ≤

d′(σ) ≤ d(σ) + 2, where a martingale d′ is exactly computable if d′ : 2<ω → Q2 is

a martingale that, given input σ outputs the exact value d(σ) ∈ Q2 (as opposed to

outputting an index for a sequence of rationals approximating d(σ). As a result,

the characterizations of computable randomness, Schnorr randomness, and Kurtz

randomness, each given in terms of computable martingales, can also be given in

terms of exactly computable martingales. In this section, we use these results to

characterize these three notions of randomness in terms of truth-table functionals.

The key result for these characterizations is the following.

Proposition 3.13. If d is an exactly computable martingale such that d(∅) = 1,

then there is a truth-table functional Φ such that d = LΦ.

Proof. We apply the Functional Existence Theorem to prove this result. We let V

consist of all pairs of the form (2−|σ|d(σ), σ). We claim that V is a bounded functional

request set. First note that V is a c.e. set of pairs, and that

wtV (σ) = 2−|σ|d(σ)

for every σ ∈ 2<ω. It thus follows that wtV (∅) = d(∅) = 1 and

wtV (σ) = 2−|σ|d(σ) = 2−|σ0|d(σ0) + 2−|σ1|d(σ1) = wtV (σ0) + wtV (σ1),

84



where the second equality holds because d is a martingale. By the Functional Exis-

tence Theorem, there is a Turing functional Φ such that d = LΦ. We now show that

Φ is total by induction. That is, we show that for every n,

⋃
σ∈2n

JPreΦ(σ)K = 2ω.

First, by the construction proof of the Functional Existence Theorem, since (1,∅) ∈ V ,

(∅,∅) is enumerated into Φ, and thus

JPreΦ(∅)K = J∅K = 2ω.

Now suppose that ⋃
σ∈2n

JPreΦ(σ)K = 2ω

for fixed n ∈ ω. For each σ ∈ 2n, we have

(2−|σ0|d(σ0), σ0), (2−|σ1|d(σ1), σ1) ∈ V,

where

2−|σ|d(σ) = 2−|σ0|d(σ0) + 2−|σ1|d(σ1).

Then if PreΦ(σ) = {τ1, . . . , τ`}, we can find extensions ξ0
1 , . . . , ξ

0
j and ξ1

1 , . . . , ξ
1
k of the

strings τ1, . . . , τ` such that

∑
i≤j

λ(ξ0
i ) = 2−|σ0|d(σ0) and

∑
i≤k

λ(ξ1
i ) = 2−|σ1|d(σ1).
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If we enumerate the pairs (ξ0
i , σ0) for i ≤ j and (ξ1

i , σ1) for i ≤ k into Φ, then

PreΦ(σ0) = {ξ0
1 , . . . , ξ

0
j } and PreΦ(σ1) = {ξ1

1 , . . . , ξ
1
k}

and hence

JPreΦ(σ)K = JPreΦ(σ0)K ∪ JPreΦ(σ1)K.

Continuing in this way for each σ ∈ 2n, it follows that

⋃
τ∈2n+1

JPreΦ(τ)K = 2ω.

Using Proposition , we can now derive the following.

Theorem 3.14. (i) A ∈ 2ω is computably random if and only if for every truth-

table functional Φ, Φ is measure-bounded along A.

(i) A ∈ 2ω is Schnorr random if and only if for every truth-table functional Φ and

every computable order h, Φ is effectively measure-bounded along A via h.

(ii) A ∈ 2ω is Kurtz random if and only if for every truth-table functional Φ and

every computable order h, Φ is weakly effectively measure-bounded along A

via h.

Proof. The proof is like the proofs of Theorems 10 and 12, except now we use Propo-

sition 13 and the fact that the martingale characterizations of computable random-
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ness, Schnorr randomness, and Kurtz randomness all still hold if we restrict to the

collection of exactly computable martingales.

3.3.3 A Priori Complexity Characterizations of Notions of Randomness

In this section, the results from the previous section can be recast in terms of a

priori complexity. As a first step in this direction, we need to consider optimal c.e.

continuous semimeasures.

Definition 3.15. A c.e. continuous semimeasure δ is optimal if for every c.e. con-

tinuous semimeasure δ′, there is some c ∈ ω such that

δ(σ) ≥ cδ′(σ)

for every σ ∈ 2<ω.

With this definition, we can now define the a priori complexity of a string σ ∈ 2<ω.

Definition 3.16. Let δ be an optimal semimeasure. Then the a priori complexity

of σ ∈ 2<ω, denoted KM(σ), is defined to be

KM(σ) = − log δ(σ).

The key observation to make is that a c.e. supermartingale d can easily be trans-

formed into a c.e. continuous semimeasure δ(σ) := 2−|σ|d(σ). In particular, if LΦ is
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a c.e. supermartingale, then the function δΦ, defined to be

δΦ(σ) := 2−|σ|LΦ(σ) = λ(JPreΦ(σ)K)

for all σ ∈ 2<ω, is a c.e. continuous semimeasure.

Now, if we set KMΦ(σ) = − log λ(JPreΦ(σ)K), we can summarize our previous

results as follows:

Theorem 3.17. (i) A ∈ 2ω is Martin-Löf random if and only if for every Turing

functional Φ and for all n ∈ ω,

KMΦ(A�n) ≥ n−O(1).

(ii) A ∈ 2ω is computably random if and only if for every almost total functional Φ

and for all n ∈ ω,

KMΦ(A�n) ≥ n−O(1).

(iii) A ∈ 2ω is Schnorr random if and only if for every almost total functional Φ,

for every computable order g, and for every n ∈ ω,

KMΦ(A�n) ≥ n− g(n)−O(1).

(iv) A ∈ 2ω is Kurtz random if and only if for every almost total functional Φ, for
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every computable order g, and for infinitely many n ∈ ω,

KMΦ(A�n) ≥ n− g(n)−O(1).

Proof. (i) By Theorem 3.6, A ∈ MLR if and only if

λ(JPreΦ(A�n)K) ≤ c · λ(A�n)

for every Turing functional Φ. Hence,

KMΦ(A�n) = − log λ(JPreΦ(A�n)K)

≥ − log(c · λ(A�n))

= − log(c) +− log(λ(A�n))

= n−O(1).

(ii) By Theorem 3.10, A ∈ CR if and only if

λ(JPreΦ(A�n)K) ≤ c · λ(A�n)

for every almost total Turing functional Φ. Hence, by the same reasoning as above,

KMΦ(A�n) ≥ n−O(1).
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(iii) By Theorem 3.12 (i), A ∈ SR if and only if

λ(JPreΦ(A�n)K) ≤ c · h(n)λ(A�n)

for every n ∈ ω, for every almost total functional Φ, and every computable order h.

Given a computable order g, let h(n) = 2g(n). Then

KMΦ(A�n) = − log λ(JPreΦ(A�n)K)

≥ − log(c · h(n)λ(A�n))

= − log(c) +− log(h(n)) +− log(λ(A�n))

= n− g(n)−O(1)

for every n ∈ ω. (iv) The proof is like the proof of (iii), except we replace “every

n ∈ ω” with “infinitely many n ∈ ω”.

Moreover, we can recast Theorem 3.14 as follows:

Theorem 3.18. (i) A ∈ 2ω is computably random if and only if for every truth-

table functional Φ and for all n,

KMΦ(A�n) ≥ n−O(1).

(ii) A ∈ 2ω is Schnorr random if and only if for every truth-table functional Φ, for

every computable order h, and for almost every n,

KMΦ(A�n) ≥ n− h(n).
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(iii) A ∈ 2ω is Kurtz random if and only if for every truth-table functional Φ, for

every computable order h, and for every n,

KMΦ(A�n) ≥ n− h(n).

Proof. The proof is nearly identical to the proof of (ii), (iii), and (iv) of Theorem 3.17,

except we use the characterization of measure-boundedness given in terms of truth-

table functionals provided by Theorem 3.14.

We close with the observation that both Theorem 3.17 and Theorem 3.18 can be

further generalized.

Theorem 3.19. Let µ ∈Mc.

(i) A ∈ MLRµ if and only if for every Turing functional Φ and for all n ∈ ω,

KMΦ(A�n) ≥ − log µ(A�n)−O(1).

(ii) A ∈ CRµ if and only if for every almost total functional Φ and for all n ∈ ω,

KMΦ(A�n) ≥ − log µ(A�n)−O(1).

(iii) A ∈ SRµ if and only if for every almost total functional Φ, for every computable

order g, and for every n ∈ ω,

KMΦ(A�n) ≥ − log µ(A�n)− g(n)−O(1).
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(iv) A ∈ KRµ if and only if for every almost total functional Φ, for every computable

order g, and for infinitely many n ∈ ω,

KMΦ(A�n) ≥ − log µ(A�n)− g(n)−O(1).

Proof Sketch. Use the characterizations of MLRµ, CRµ, SRµ, and KRµ in terms of

c.e. µ-supermartingales (for MLRµ) and computable µ-martingales (for CRµ, SRµ,

and KRµ). First show by the Functional Existence Theorem that for every µ-

supermartingale d, there is a Turing functional Φ such that

d(σ) =
µ(JPreΦ(σ)K)

µ(σ)

and for every µ-martingale d′, there is an almost total functional Ψ such that

d′(σ) =
µ(JPreΨ(σ)K)

µ(σ)
.

The measure-bounded characterizations can be generalized to µ, and then one can

proceed as in the proof of Theorem 3.17.

Similarly, one can also show:

Theorem 3.20. Let µ ∈Mc be exactly computable.

(i) A ∈ CRµ if and only if for every truth-table functional Φ and for all n,

KMΦ(A�n) ≥ − log µ(A�n)−O(1).
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(ii) A ∈ SRµ if and only if for every truth-table functional Φ, for every computable

order h, and for almost every n,

KMΦ(A�n) ≥ − log µ(A�n)− h(n).

(iii) A ∈ KRµ if and only if for every truth-table functional Φ, for every computable

order h, and for every n,

KMΦ(A�n) ≥ − log µ(A�n)− h(n).

Proof Sketch. Since µ is exactly computable, we can proceed as in the proof of Propo-

sition 3.3.2, and then follow the proof sketch given above for Theorem 3.19.
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CHAPTER 4

DEMUTH’S THEOREM: VARIANTS AND APPLICATIONS

4.1 Introduction

The main topic of this chapter is a theorem of Oswald Demuth’s concerning

the behavior of random sequences under truth-table reductions. Roughly, Demuth’s

Theorem tells us that if we apply a tt-functional to a Martin-Löf random sequence X,

if the resulting sequence Y has any non-trivial computational content whatsoever (i.e.

if it is not a computable sequence), then from Y we can effectively recover a Martin-

Löf random sequence Z. Recently, a stronger version of Demuth’s Theorem has

repeatedly appeared in circulated drafts, talks, and even in some published papers,

which asserts that one can even require that Y is wtt-equivalent to Z. This is for

example the version given in [Fra08], where the author further asks

(i) whether z can further be required to be tt-equivalent to y; and

(ii) whether Demuth’s theorem also holds for Schnorr randomness.

Not only is (i) answered in the negative, but the “wtt-version” of Demuth’s theorem

is false, contrary to what has been reported in the literature. However, (ii) has a

positive answer. In fact, we show in this chapter that Demuth’s Theorem holds for

computable randomness, Schnorr randomness, and weak 2-randomness.
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4.2 Proving Demuth’s Theorem

In this section, we give a detailed proof of Demuth’s Theorem.

Theorem 4.1 (Demuth [Dem88]). Given X ∈ MLR, for every non-computable Y ≤tt
X, there is some Z ∈ MLR such that Y ≡T Z.

Although Demuth proved his theorem using tools from constructive analysis,

another way to prove the theorem is to break it down into two results, each of which

has been shown independently of Demuth’s work. The first result is the well-known

“preservation of randomness” theorem. In Chapter 2, Section 2.4.3, we saw that

total and almost total functionals induce computable measures. According to the

preservation of randomness theorem, these functionals also having the property of

mapping sequences that are random with respect to the initial measure to sequences

that are random with respect to the induced measure.

Theorem 4.2 (Preservation of Martin-Löf randomness). For µ ∈ Mc and Φ an

almost total functional, for every X ∈ 2ω, X ∈ MLRµ implies Φ(X) ∈ MLRµΦ
.

Proof. Suppose that Φ(X) /∈ MLRµΦ
; we will show that X /∈ MLRµ. Let {Ui}i∈ω be a

µΦ-Martin-Löf test such that Φ(x) ∈ ⋂i∈ω Ui. We define a µ-Martin-Löf test {Vi}i∈ω
containing X as follows. First, let {Si}i∈ω be a prefix-free presentation of {Ui}i∈ω.

Then we define, for each i ∈ ω,

Pi =
⋃
σ∈Si

PreΦ(σ).

Note that since Si is prefix-free, for distinct σ1, σ2 ∈ Si, PreΦ(σ1) ∩ PreΦ(σ2) = ∅,
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and so
⋃
σ∈Si PreΦ(σ) is a disjoint union. Hence

µ(JPiK) = µ
( ⋃
σ∈Si

JPreΦ(σ)K
)

=
∑
σ∈Si

µ(JPreΦ(σ)K) =
∑
σ∈Si

µ(Φ−1(JσK)) = µΦ(Ui).

Now if we set Vi := JPiK for each i, we have µ(Vi) = µΦ(Ui) for each i. In addition,

since the collection {V}i∈ω is definable uniformly from {U}i∈ω, it follows that {V}i∈ω
is a µ-Martin-Löf test. Lastly, we must verify that X ∈ ⋂i∈ω Vi. For each i, since

Φ(X) ∈ Ui, there is some σ ∈ Si and some least n ∈ ω such that ΦX�n � σ. Thus

X�n ∈ PreΦ(σ), and so it follows that X�n ∈ Pi and X ∈ Vi.

The second result used to derive Demuth’s Theorem is sometimes referred to

as “Levin’s theorem” or “the Levin-Kautz theorem” (although Levin proved the

theorem with Zvonkin, independently of Kautz).

Theorem 4.3 (Levin/Zvonkin [ZL70], Kautz [Kau91]). If Y ∈ MLRµ is non-computable

for some µ ∈Mc, then there is some Z ∈ MLR such that Y ≡T Z.

In the remainder of this section, we will provide a proof of the Levin-Kautz

Theorem that has not appeared explicitly in the effective randomness literature.

Before we do so, we should note that the two theorems given above immediately

imply Demuth’s Theorem: Given a tt-functional Φ and X ∈ MLR, since Φ is almost

total, by the preservation of randomness, it follows that Φ(X) ∈ MLRλΦ
, and λΦ is

computable by Lemma 2.15. Further, if Φ(X) is not computable, then by the Levin-

Kautz Theorem there is some Z ∈ MLR such that Φ(X) ≡T Z, thus establishing the

result.
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Let us now turn to the proof of the Levin-Kautz Theorem. In order to prove

the result, we need to prove an auxiliary result that we will refer to as the “Kautz

conversion procedure”. This result provides a converse to Lemmas 2.15 and 2.16, as

it shows that any computable measure µ can be induced by the Lebesgue measure

together with an almost total functional Φ. Moreover, we can define Φ with the

additional property of being non-decreasing : For X, Y ∈ dom(Φ), X ≤lex Y implies

that Φ(X) ≤lex Φ(Y ) (or, equivalently, thinking of X and Y as real numbers, X ≤ Y

implies that Φ(X) ≤ Φ(Y ).

Theorem 4.4 (The Kautz conversion procedure). Let µ ∈Mc. Then there exists a

non-decreasing, almost total functional Φ such that λΦ = µ. Moreover,

- if µ is atomless, then Φ is one-to-one, and

- if µ is positive, then Φ is onto up to a set of µ-measure 0.

Finally, if µ is both atomless and positive, then Φ has an almost total inverse Φ−1

such that µΦ−1 = λ.

Proof of Theorem 4.4. The key observation in Kautz’s proof is that for µ ∈ Mc,

almost every X ∈ 2ω has a binary representation in [0,1] given in terms of µ, which

we will refer to as its “µ-representation”, denoted by seqµ(X).

By removing the initial decimal point, we can simply consider seqµ(X) as a mem-

ber of 2ω. Similarly, by adding an initial decimal point, we can consider X as a mem-

ber of [0,1]. Moving in this way between 2ω and [0,1] will facilitate the presentation

of this proof.
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Now, using the notion of a µ-representation, we will define an almost total func-

tional Φ so that Φ(X) = seqµ(X). To compute the µ-representation of X ∈ 2ω, we

make use of what we call a µ-partition of [0,1]. A µ-partition of [0,1] at level n is a

collection of k = 2n closed intervals Iσ0 , Iσ1 , . . . Iσk−1
such that

1. σ0, σ1, . . . , σk−1 is a listing of all strings of length n in lexicographical ordering,

2.
⋃k−1
i=0 Iσi = [0, 1],

3. sup Iσi = inf Iσi+1
for 0 ≤ i ≤ k − 2, and

4. µ(σi) = λ(Iσi) for 0 ≤ i ≤ k − 1.

We further require that the µ-partition of level n is compatible with the µ-partition

of level n+ 1 for every n, so that given a string σ of length n, we have

Iσ = Iσ0 ∪ Iσ1.

Given a sequence X ∈ 2ω, we can compute its µ-representation seqµ(X) as follows.

To determine the first bit of seqµ(X), we consider the µ-partition of [0,1] at level 1,

I0 ∪ I1. Since µ is computable but not necessarily exactly computable, we may have

to approximate I0 and I1 until we see that X ∈ I0 or X ∈ I1. This will occur, so

long as X is not the right endpoint of I0. To see this, first note that since both I0

and I1 are closed, there is some n such that for every Y ∈ JX�nK, Y is contained

entirely in either I0 or I1. Further, I0 = [0, µ(0)] and I1 = [µ(0), 1], and hence we
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can approximate I0 and I1 using the approximation µ̂ of µ as follows:

I0,s = [0, µ̂(0, s+ 1) + 2−s] and I1,s = [µ̂(0, s+ 1)− 2−s, 1]

Then we have Ii ⊆ Ii,s for i ∈ {0, 1}, so we can simply wait until we find n, s ∈ ω

such that JX�nK is contained entirely in Ii,s for some i ∈ {0, 1}. If X ∈ I0, the first

bit of seqµ(X) is a 0, and if X ∈ I1, the first bit of seqµ(X) is a 1. In the case where

X is the right endpoint of I0, Φ(X) is undefined.

Having determined the first n bits of seqµ(X) by finding σ such that |σ| = n and

X ∈ Iσ, we determine whether X ∈ Iσ0 or x ∈ Iσ1 (where Iσ0 and Iσ1 are given by

the µ-partition of [0,1] at level n+ 1), and output a 0 or 1 accordingly, as in the base

case described above. The only difference is the way in which we approximate the

intervals Iσ0 and Iσ1. Suppose that X ∈ Iσ = [`(σ), r(σ)], where

`(σ) =
∑

{τ∈2n:τ<lexσ}

µ(τ) and r(σ) = `(σ) + µ(σ).

If X is not an endpoint of Iσ, then, as above, we can approximate Iσ0 and Iσ1 until

we see that X ∈ Iσ0 or X ∈ Iσ1. That is, we wait until we find s, nω such that JX�nK

is contained entirely in Iσi,s = [`s(σi), rs(σi)] for some i ∈ {0, 1}, where

`s(α) =
∑

{τ∈2<ω :|τ |=|α| ∧ τ<lexα}

µ̂(τ, s+ |α|+ 2)− 2−(s+2)

and

rs(α) = `s(α) + µ̂(α, s+ |α|+ 2) + 2−(s+2).
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for each α ∈ 2<ω, from which it follows that

rs(α)− `s(α) = µ̂(α, s+ |α|+ 2) + 2−(s+2)

≥ µ(α)− 2−(s+|α|+2) + 2−(s+2)

= µ(α) + 2−(s+2)(1− 2−|α|).

(4.1)

Thus, Iα ⊆ Iα,s+1 ⊆ Iα,s for every α ∈ 2<ω and s ∈ ω.

If X is not an endpoint of Iσ for any σ ∈ 2<ω, then seqµ(X) is the unique sequence

Y ∈ 2ω such that X ∈ IY �n for every n. Clearly, Φ is non-decreasing and almost

total, and we have that

Φ−1(JσK) = {X ∈ 2ω : Φ(X) � σ} = Iσ \ A,

where A contains all endpoints of intervals Iτ for τ � σ, and hence has measure 0.

Thus,

λΦ(σ) = λ(Φ−1(JσK)) = λ(Iσ \ A) = λ(Iσ) = µ(σ).

In the case where µ is atomless, we have that for every Y ∈ 2ω, limn→∞ λ(IY �n) = 0.

This implies that there is a unique X such that
⋂
n∈ω IY �n = {X}. Thus, if Φ(X1) =

Φ(X2), we must have X1 = X2.

Note that Φ is not onto: if X is an endpoint of some Iσ, then seqµ(X) will not

be in the range of Φ. However, if µ is positive, Φ is onto up to a set of measure 0,

which is in fact a countable set. To see this, note that for every σ ∈ 2<ω, λ(Iσ) > 0,

which means that Φ−1(JσK) is non-empty. If Y ∈ 2ω, where Y 6= seqµ(Z) for any Z
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that is an endpoint of some Iσ, then

Φ−1(JY �nK) ⊇ Φ−1(JY �(n+ 1)K)

for every n and each is non-empty. Then there is some X such that

X ∈
⋂
n∈ω

Φ−1(JY �nK).

Therefore Y = seqµ(X). In the case where µ is both atomless and positive, then

since Φ is one-to-one, it has an inverse Φ−1. Since Φ is onto up to a countable set

of measure zero (and hence µ-measure zero), it follows that Φ−1 is µ-almost total.

Given Y ∈ 2ω in the range of Φ, i.e. Φ(x) = y for some X ∈ 2ω, then Φ−1(Y ) can

be computed by successively computing Φ−1(JY �nK) for each n and then taking the

intersection. More specifically, since

⋂
n∈ω

Φ−1(JY �nK) = {X},

for each i, we will eventually find some ni such that

Z ∈
⋂
n≤ni

Φ−1(JY �nK)⇒ Z�i = X�i.

Thus we will have (Φ−1)Y �ni � X�i for every i.

The next theorem provides a partial converse to the preservation of randomness

theorem, stating that every sequence that is random with respect to some computable
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measure induced by a functional Φ has a random sequence in its preimage under Φ.

Theorem 4.5. For µ ∈ Mc, let Φ be a µ-almost total functional. For every

Y ∈ MLRµΦ
there is some X ∈ MLRµ such that Φ(X) = Y .

Proof. Suppose Y ∈ 2ω is such that for all X ∈ 2ω such that Φ(X) = Y , X /∈ MLRµ.

Let {Ui}i∈ω be the universal µ-Martin-Löf test, and consider

Vi = {Z ∈ 2ω : (∀X)[X /∈ Ui ⇒ Φ(X) 6= Z]}.

We claim that {Vi}i∈ω is a µΦ-Martin-Löf test. First, observe that Z ∈ Vi if and only

if Z /∈ Φ(2ω \ Ui). Since Φ is an almost total Turing functional, the image under Φ

of a Π0
1 class is also a Π0

1 class. In particular, Φ(2ω \ Ui) is a Π0
1 class.

To see that µΦ(Vi) ≤ 2−i, since 2ω \ Ui ⊆ Φ−1(Φ(2ω \ Ui)), we have

µΦ(Vi) = 1−µΦ(Φ(2ω\Ui)) = 1−µ(Φ−1(Φ(2ω\Ui))) ≤ 1−µ(2ω\Ui) ≤ 1−(1−2−i) = 2−i.

Finally, since for all X ∈ 2ω such that Φ(X) = Y , X /∈ MLRµ, it follows that X /∈ Ui
implies Φ(X) 6= Y for every i, and so Y ∈ Vi for every i. Thus, Y /∈ MLRµΦ

.

We can now prove the Levin-Kautz Theorem.

Proof of Theorem 4.3. Given a non-computable Y and µ ∈Mc such that X ∈ MLRµ,

by Theorem 4.4, there is some non-decreasing almost total functional Φ such that µ =

λΦ. Since Y ∈ MLRλΦ
, by Theorem 4.5, there is some Z ∈ MLR such that Φ(Z) = Y .

Moreover, suppose there is U ∈ 2ω such that Φ(U) = Y and U 6= Z. Without loss,

we can assume that U <lex Z. Since Φ is non-decreasing, this would mean that the
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entire interval [U,Z] is mapped by Φ to the singleton {Y }, and therefore Y would

be an atom of λΦ and hence computable, contradicting our assumption. Therefore,

Y has a unique preimage Z under Φ; in other words Φ−1({Y }) is a Π0
1(Y )-class

containing a single element Z. Just as isolated paths in a Π0
1 class are computable,

the isolated paths in a Π0
1(Y ) class are Y -computable, and thus Z is Y -computable.

Therefore, Z ≡T Y and Z ∈ MLR.

We conclude this section with one last result, which will be useful in Chapter 5.

Theorem 4.6. Let Φ be almost total. Then for every X ∈ MLR such that Φ(X) is

not computable,

X ∈ MLRA ⇔ Φ(X) ∈ MLRAλΦ

for all A ∈ 2ω.

Proof. (⇒): This follows from the proof of Theorem 4.2, the preservation of Martin-

Löf randomness, where we replace the Martin-Löf tests appearing in the original

proof with Martin-Löf tests relative to A.

(⇐): This follows from the proof of Theorem 4.5, where we replace the Martin-Löf

tests appearing in the original proof with Martin-Löf tests relative to A.

4.3 Demuth’s Theorem for Other Notions of Randomness

In this section, we consider Demuth’s Theorem for other notions of effective

randomness; namely, Schnorr randomness, computable randomness, and weak 2-

randomness.
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Theorem 4.7. Let µ ∈ Mc and Φ be an almost total functional. Then X ∈ SRµ

implies Φ(X) ∈ SRµΦ
.

Proof. In the proof of the preservation of Martin-Löf randomness (Theorem 4.2),

we show that if Φ(X) is contained in a µΦ-Martin-Löf test {Ui}i∈ω, then there is

a µ-Martin-Löf test {Vi}i∈ω containing X. In fact, we prove more: we show that

µ(Vi) = µΦ(Ui) for every i ∈ ω. Thus, if {Ui}i∈ω is a µΦ-Schnorr test containing

Φ(X), it follows that {V}i∈ω is a µ-Schnorr test containing X.

We also have the preservation of weak 2-randomness.

Theorem 4.8. Let µ ∈Mc and Φ be almost total. Then X ∈ W2Rµ implies Φ(X) ∈

W2RµΦ
.

Proof. Suppose Φ(X) ∈ U , where S is a Π0
2 class such that µΦ(S) = 0. Setting

S =
⋂
i∈ω Ui, where each Ui is a Σ0

1 class such that µΦ(Ui) → 0 as i grows without

bound, each Φ−1(Ui) is a Σ0
1 class such that µ(Φ−1(Ui)→ 0 as i approaches infinity.

Thus, Φ−1(S) =
⋂
i∈ω Φ−1(Ui) is a Π0

2 class of µ-measure 0 containing X, and hence

X /∈ W2Rµ.

Although we have the proved both the preservation of Martin-Löf randomness and

the preservation of Schnorr randomness, perhaps surprisingly, there is no preservation

of computable randomness. We prove the following.

Theorem 4.9. There exists a tt-functional Φ and A ∈ CR such that Φ(A) /∈ CRλΦ
.

Proof. Let A ∈ CR \ KLR. Then there is a non-monotonic betting strategy S that

succeeds on A. By Proposition 2.85, we can assume that this betting strategy S is
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total. Then we define Φ as follows: Given X ∈ 2ω, let Φ(X) be the sequence of

bits visited by S during the game, in order of appearance. Clearly, Φ is total, and

for every n ∈ ω, n bits of X are need to compute the first n bits of Φ(X). Thus,

λΦ = λ. Now since S succeeds on A, this means there is a computable martingale d

that succeeds on Φ(A), and hence Φ(A) /∈ CR = CRλΦ
.

The proof of the Levin-Kautz Theorem that we provided in the previous section

does not work for Schnorr randomness or for weak 2-randomness, since the proof

relies upon the existence of a universal Martin-Löf test, and it is well-known that

there is no universal Schnorr test and no universal test for weak 2-randomness. For

computable randomness, the situation is even worse as we have seen that there is

no randomness preservation for this notion. As a consequence, we cannot prove

Demuth’s theorem for these randomness notions by a direct adaptation of the proof

of Demuth’s theorem for Martin-Löf randomness.

There are, however, alternative approaches to proving Demuth’s Theorem that

allow us to overcome the difficulty, one that works both for computable randomness

and Schnorr randomness and another for weak 2-randomness.

The alternative approach for Schnorr randomness and computable randomness

uses Propositions 2.59: a Schnorr random (resp. computably random) sequence is

either Martin-Löf random, or it is high. Armed with this dichotomy, we get Demuth’s

theorem for Schnorr randomness and computable randomness almost immediately

from Demuth’s theorem for Martin-Löf randomness. In fact, we get a slightly stronger

statement that subsumes both, in the sense that it suffices to assume X ∈ SR to get
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Z ∈ CR in the conclusion.

Theorem 4.10 (Demuth’s Theorem for computable and Schnorr randomness). Let

X ∈ SR and let Φ be a truth-table functional. If Φ(X) = Y is not computable, then

there is some Z ∈ CR such that Y ≡T Z.

Proof. Regardless of whether X ∈ CR ⊆ SR or X ∈ SR \ CR, we can still apply the

preservation of randomness for Schnorr randomness (Theorem 4.7) to conclude that

Φ(X) = Y is Schnorr random with respect to some computable measure µ. We now

distinguish two cases.

Case 1: If Y is not high, then by Proposition 2.59 it must be µ-Martin-Löf random.

Thus, we can apply the Levin-Kautz theorem (Theorem 4.3) to get a real Z ≡T Y

that is Martin-Löf random and hence computably random.

Case 2: If Y is high, then we can directly apply Theorem 2.53 to get the existence

of some Z ∈ CR such that Z ≡T Y .

To show that Demuth’s theorem for weak 2-randomness holds, we use the char-

acterization of weak 2-randomness from Theorem 2.69: X ∈ W2R if and only if

X ∈ MLR and X forms a minimal pair with ∅′.

Theorem 4.11 (Demuth’s Theorem for weak 2-randomness). Let X ∈ W2R and let

Φ be a truth-table functional. If Φ(X) = Y is not computable, then there is some

Z ∈ W2R such that Y ≡T Z.

Proof. By the preservation of weak 2-randomness (Theorem 4.8), Φ(X) ∈ W2RλΦ
.

Then since Φ(X) = Y is not computable, it follows that Y ∈ MLRλΦ
and Y forms a
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minimal pair with ∅′. Then by the Levin-Kautz theorem, Theorem 4.3, there is some

Z ≡T Y that is Martin-Löf random and forms a minimal pair with ∅′, and thus is

weakly 2-random.

4.4 The failure of Demuth’s theorem for wtt-reducibility

In the original proof of Demuth’s theorem, Demuth proves a slightly stronger

conclusion.

Proposition 4.12 (Demuth). Let X ∈ MLR and suppose Y ≤tt X is not computable.

Then there is some Z ∈ MLR such that Y ≡T Z and Y ≤tt Z.

Proof. The key insight needed to derive the additional conclusion that Y ≤tt Z is

that we can take the tt-reduction Φ from X to Y and reorder the truth-tables used by

Φ to define a non-decreasing functional Φ̂ that induces the same measure as Φ. More

precisely, given a function h that bounds the use of Φ, if we take the table consisting

of a column of the 2h(n) strings of length h(n) listed in lexicographical order alongside

a column of the images of these strings under Φ (which will be strings of length n),

we can define a new table by permuting the values in the output column to list them

in lexicographical order (leaving fixed the first column of input strings), thus yielding

a non-decreasing map from strings on length h(n) to strings of length n.

Now if we let Z be the leftmost sequence such that Φ̂(Z) = Y , then using the

permuted truth-tables and Y , we can effectively recover Z, and hence Y ≥T Z.

(Note that this will not, in general, be a tt-reduction, because there may be no

computable bound on the amount of Y needed to determine the first n bits of the

leftmost sequence that Φ̂ maps to Y .)
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It is therefore natural to ask whether the reverse reduction, Y ≥T Z, can also

be strengthened to Y ≥tt Z or Y ≥wtt Z. We will prove that this is not the case in

general, not only for Demuth’s original theorem, but also for the versions of Demuth

theorem for computable randomness and Schnorr randomness proven in the previous

section.

Although not strictly necessary, our analysis will make use of the so-called com-

plex reals, which were defined by Kjos-Hanssen, Merkle, and Stephan [KHMS11].

To prove the failure of the wtt-version of Demuth’s theorem, we will show that (i)

if a real Y wtt-computes some Z ∈ MLR, Y must be complex and (ii) there is

an X ∈ MLR and a real Y ≤tt X such that Y is non-computable but not complex.

Complex reals were defined by Kjos-Hanssen et al. using plain (or prefix-free)

Kolmogorov complexity. We shall define them using another version of Kolmogorov

complexity, called monotone complexity, which for our purposes is slightly easier to

handle.

Definition 4.13. X ∈ 2ω is called complex if there is some computable order h :

ω → ω such that

C(X�n) ≥ h(n)

for every n ∈ ω.

Definition 4.14. A monotone machine is a function M : 2<ω → 2<ω ∪ 2ω such

that (i) M(σ1) � M(σ2) for all σ1 � σ2 and (ii) the set of pairs of strings (σ, τ)

with τ � M(σ) is c.e. Fixing a universal monotone machine M , we define the
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Km-complexity of τ ∈ 2<ω to be

Km(τ) = min{|σ| : τ �M(σ)↓}.

A real X is said to be Km-complex if there is a computable order g such that

Km(x�n) ≥ g(n) for every n.

Proposition 4.15. The following are equivalent for X ∈ 2ω:

(i) X is Km-complex.

(ii) X is complex

The following Lemma is needed in the proof of Proposition 4.15.

Lemma 4.16. A ∈ 2ω is complex if and only if there is some sequence {σn}n∈ω ≤wtt
A such that C(σn) ≥ n for every n ∈ ω.

Proof of Proposition 4.15. (i)⇒ (ii): First, we appeal to a standard fact about the

relationship between Km, K, and C:

Km(σ) ≤ K(σ) ≤ 2C(σ).

Thus,

(∀n)Km(X�n) ≥ h(n)

implies

(∀n)C(X�n) ≥ h(n)

2
≥
⌊
h(n)

2

⌋
.
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(ii)⇒ (i): Suppose that A is complex. Then by Lemma 4.16, there is some sequence

{σn}n∈ω ≤wtt A such that C(σn) ≥ n for every n ∈ ω. Let Φ be the wtt-functional

witnessing this reduction, and let f be a computable bound on the use, so that

ΦA�f(n)(n) = σn. Then for every n ∈ ω,

Km(A�f(n)) ≥ C(σn)− 2 log n−O(1) ≥ n− 2 log n ≥ n

2
−O(1).

To see that the first inequality holds, consider the following procedure to produce σn.

Suppose τ ∈ 2<ω is such that M(τ) � A�f(n), where M is the universal monotone

machine. Then, from τ and a specification of n (in no more than 2 log(n) + O(1)

bits), we can compute ΦA�f(n)(n) = σn.

Now given n ∈ ω, there is some k such that n ∈ [f(k), f(k + 1)) (unless

f(k) = f(k + 1), in which case n = f(k)). Then since f−1(n) = min{k : f(k) ≥ n},

it follows that either k = f−1(n) (if f(k) = n) or k + 1 = f−1(n) (if f(k) 6= n).

Moreover, since Km is monotonic, Km(A�f(k)) ≤ Km(A�n) Then since

Km(A�f(n)) ≥ n

2
−O(1)

for every n ∈ ω, it follows that

Km(A�n) ≥ Km(A�f(k)) ≥ k

2
−O(1) ≥ f−1(n)− 1

2
−O(1).

Since
f−1(n)− 1

2
−O(1) is a computable order, it follows that A is Km-complex.
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Henceforth, in light of this result, we will not distinguish between complex and

Km-complex sequences.

For the following discussion, it is important to note that a version of the Levin-

Schnorr theorem holds for monotone complexity.

Theorem 4.17. Z ∈ MLR if and only if Km(Z�n) = n−O(1).

By setting h(n) = n, it immediately follows that Martin-Löf random sequences

are complex. Furthermore, any sequence Y that wtt-computes a Martin-Löf random

sequence is itself complex. This follows from the straightforward fact that complex

reals are closed upwards in the wtt-degrees.

Lemma 4.18. Given A,B ∈ 2ω such that A ≥wtt B. If B is complex then so is A.

Proof. Let Φ be a wtt-functional such that Φ(A) = B with h a computable bound

for the use of this reduction. Suppose further that B is complex as witnessed by the

computable order g. Then

Km(A�n) ≥ Km(B�h−1(n)) ≥ g(h−1(n)).

Since g ◦ h−1 is a computable order, it follows that A is complex.

The key result needed to show the failure of the wtt-version of Demuth’s Theorem

is this:

Theorem 4.19. There exists A ∈ MLR and a non-computable real B ≤tt A which is

not complex.
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Proof. To prove this theorem, we take A to be Chaitin’s Ω number, where Ω :=∑
U(σ)↓ 2−|σ|, U being a universal prefix-free machine. It is well-known that Ω ∈ MLR

and that Ω is a left-c.e. real, which means that there is a computable sequence

of rationals (Ωs)s that converges to Ω from below. Note that this sequence must

converge very slowly, i.e. there is no computable function f such that Ω�n = Ωf(n)�n

infinitely often, for otherwise we would be able to compress the corresponding initial

segments of Ω. We use the slowness of this approximation to build the sequence

B. We achieve this through the following tt-reduction. Let Φ : 2ω → 2ω be the

functional defined for all sequences by

Φ(X) = 1t101t201t30 . . .

where the ti are defined as follows: t0 = 0 and

ti = min{s : Ωs ≥ X�i}

(where we think of X�i as a rational number) with the convention that if the set

on the right-hand side is empty, then ti = +∞. Thus if some ti is infinite, then

Φ(X) = 1t10 . . . 1tk011111 . . . where tk+1 is the first ti to be infinite.

Φ is clearly total, and hence a tt-reduction. Moreover, if A < Ω, then there is

some s such that Ωs > A�i for every i ∈ ω, and hence

Φ(A) = σ_(1k0)ω
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for some σ ∈ 2<ω and k ∈ ω. If A > Ω, then there is some i such that Ωs < A�i for

every s ∈ ω, and hence

Φ(A) = σ1ω

for some σ ∈ 2<ω. The interesting case is when A = Ω, for in this case, setting

Φ(Ω) = 1s101s201s30 . . . ,

we know that the function f given by f(i) = si grows faster than any computable

function, since Ω�n = Ωf(n)�n for every n ∈ ω. If we set Φ(Ω) = Ω∗, then we have

Km(Ω∗�f(n)) ≤ n+O(1)

and hence

Km(Ω∗�n) ≤ f−1(n) +O(1),

Since f grows faster than any computable order function, f−1 is dominated by all

computable order functions. Thus, there is no computable order function g such that

Km(Ω∗�n) ≥ g(n).

We can now prove that the wtt-version of Demuth’s theorem fails for Martin-Löf

randomness.

Corollary 4.20. There exist A ∈ MLR and a non-computable real B ≤tt A such that
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there is no Y ∈ MLR with Y ≤wtt B.

Proof. By Theorem 4.19, Ω∗ is tt-reducible to a Martin-Löf random sequence but is

not complex. Hence by Lemma 4.18, Ω∗ cannot wtt-compute any complex sequence,

and thus Ω∗ cannot wtt-compute any X ∈ MLR.

We would like to show that the wtt-version of Demuth’s theorem also fails for

computable randomness and Schnorr randomness. It seems that the real Ω∗ con-

structed in the proof of Theorem 4.19 is so far from complex that it should not even

wtt-compute a Schnorr random real. Unfortunately, we do not know whether this is

the case.

Question 4.21. Is there Y ∈ SR such that Y ≤wtt Ω∗?

We therefore need to slightly adapt the technique used in the proof of Theo-

rem 4.19, while keeping the main ideas. To prove that the wtt-version of Demuth

theorem fails for both computable randomness and Schnorr randomness, we will

prove the following (stronger) result.

Theorem 4.22. For almost all reals A, there exists a non-computable real B ≤tt A

that does not wtt-compute any Schnorr random real.

This shows in particular that there exist a Martin-Löf random (hence computably

random and Schnorr random) sequence A and a non-computable B ≤tt A such that

B does not wtt-compute any Schnorr random real. Therefore the wtt-version of

Demuth’s theorem fails for all three notions of randomness.

To prove Theorem 4.22, we need a few auxiliary facts.
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Lemma 4.23. Let f be an increasing function that is not dominated by any com-

putable function. Let g be a computable order function. Then for infinitely many n,

f(n) < g(f(n+ 1)).

Proof. Suppose for the sake of contradiction that f(n + 1) ≤ h(f(n)) for all n ≥ k,

where h = g−1. By induction, it follows that

f(n) ≤ h(n−k)(f(k))

for all n ≥ k. Then if we set ψ(n) = h(n−k)(f(k)), ψ is a non-decreasing, computable

function that dominates f , contradicting our hypothesis.

Recall that A ∈ 2ω has hyperimmune degree if A computes a function that is not

dominated by any computable function.

Theorem 4.24. Let A be a Martin-Löf random sequence of hyperimmune degree.

Then there is a sequence B ≤tt A such that B is not complex.

Proof. Since A is of hyperimmune degree, let f ≤T A be a function that is not

dominated by any computable function, and let Ψ be the Turing reduction from A

to f . For all n, define

g(n) = min{t : ΨA[t](n)↓}

By the standard conventions on oracle computations, it follows that g(n) ≥ f(n)

for all n (as we require that the number of steps for a halting computation always

exceeds the output of the computation). It follows that g is not dominated by any
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computable function. Now let Θ be the reduction defined by

Θ(X) = 1t001t101t2 . . .

where

tn = min{t : ΨX [t](n) ↓}

(with the convention that Θ(X) = 1t001t101 . . . 1ti−101111111 . . . if ti is infinite and

is the smallest such tn). The definition ensures that Θ is total and that

B = Θ(A) = 1g(0)01g(1)01g(2) . . .

We need to show that B is not complex. Let h be a computable order. Notice that

Km(1g(0)01g(1) . . . 01g(n)01g(n+1)) ≤ K(1g(0)01g(1) . . . 01g(n)0) +O(1)

≤ n log g(n) +O(1)

≤ g(n) log g(n) +O(1),

where the first inequality follows from two facts: (i) Km(στ) ≤ K(σ)+Km(τ)+O(1)

and (ii) Km(1k) = O(1) for all k.

By Lemma 4.23, applied to the composition of h and the function φ such that

φ−1(n) = n log(n), we have for infinitely many n, g(n) log g(n) + k < h(g(n+ 1)) for

any fixed k ∈ ω (as g(n) log g(n) + k is not dominated by any computable function).
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Thus for infinitely many n,

Km(B�g(n+ 1)) ≤ Km(1g(0)01g(1) . . . 01g(n)01g(n+1)) < h(g(n+ 1)).

Since this is the case for any order h, it follows that B is not complex.

We are now ready to prove Theorem 4.22.

Proof of Theorem 4.22. Let A be a Martin-Löf random real of hyperimmune but

non-high degree. In particular, we can take A to be any 3-random sequence, since

every 2-random real has hyperimmune degree, as proven by Kurtz [Kur81], and no

3-random real is high [Nie09, Exercise 8.5.21].

Then by Theorem 4.24, A tt-computes a real B that is not complex. Now suppose

that B ≥wtt C for some C ∈ 2ω. Then since B is not complex, by Lemma 4.18, C

is not complex. In particular, C not Martin-Löf random, as a Martin-Löf random

real Z is s.t. Km(Z�n) = n−O(1). Moreover, C is not high, as A ≥T B ≥T C and

A is not high. Therefore by Theorem 2.59, if C is not Martin-Löf random and not

high, then C cannot be Schnorr random.

4.5 Some Applications

In this section, we apply the machinery developed in this chapter to study random

Turing degrees and random computably enumerable sets.

117



4.5.1 Random Turing Degrees

One consequence of the machinery developed in the previous section is that we

can use it to provide an exact characterization of all of the Martin-Löf random Turing

degrees that contain a real that is random with respect to a computable measure but

not random with respect to any computable atomless measure (where a Turing degree

is Martin-Löf random if it contains a Martin-Löf random real). Let us establish a

few more definitions that will be useful in this section.

Definition 4.25. Let MLRcomp be the set of sequences A such that A ∈ MLRµ for

some computable measure µ.

The class MLRcomp was, to the best of our knowledge, first considered in [ZL70].

It was later studied in [SF77] and [MSU98].

Definition 4.26. Let NCRcomp be the set of sequences A such that A /∈ MLRµ for

any computable atomless measure µ.

The motivation behind the definition of NCRcomp comes from the work of Reimann

and Slaman (see, for instance, [RS07] and [RS08]), who studied the collection of

sequences that are not random with respect to any atomless measure (computable

or otherwise), referring to this class as NCR1. Although Reimann and Slaman have

established a number of facts about NCR1, for instance, that it is countable and

contains no non-∆1
1 reals, a number of questions about the structure of NCR1 remain

open. NCRcomp, in contrast, proves to be much easier to characterize.

We will begin by showing that there is at least one X ∈ MLRcomp ∩ NCRcomp.
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Proposition 4.27. There is X ∈ 2ω that is random with respect to some computable

atomic measure but not random with respect to any computable atomless measure.

To prove this proposition, we need one further result. By the Kautz conversion

procedure (Theorem 4.4), if a computable measure µ is atomless and positive and Φ

is an almost total functional such that λΦ = µ, then Φ−1 is an almost total functional

such that µΦ−1 = λ. However, if Φ is total and λΦ = µ, it is not true in general

that Φ−1 is total with µΦ−1 = λ. Still, we can find some other tt-functional Θ that

induces a measure ν that, while not equal to λ, is equivalent to λ, in the sense that

MLRν = MLR.

Proposition 4.28. If µ is a atomless, computable measure, then there is a non-

decreasing tt-functional Θ such that the induced measure µΘ has the property that

MLRµΘ
= MLR.

Proof. The idea behind the proof is to define a non-decreasing tt-functional Θ such

that µΘ is a generalized Bernoulli measure, where this means that for every n, there

is some pn ∈ [0, 1] such that

pn =
µΘ(σ0)

µΘ(σ)

for every σ ∈ 2<ω of length n. Moreover, we will define Θ so that

∣∣∣∣pn − 1

2

∣∣∣∣2 ≤ 2−|σ|

for every n ∈ ω. Lastly, we would like to define Θ in such a way that the resulting
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values pn will always be contained in some fixed interval [ε, 1 − ε] for ε ∈ (0, 1
2
);

such measures are called strongly positive. Now by the effective version of Kaku-

tani’s Theorem (see, for instance, [BM09]), given two computable, strongly positive,

generalized Bernoulli measures µ1 (with associated values p1, p2, . . . ) and µ2 (with

associated values q1, q2, . . . ) such that

∞∑
i=1

|pi − qi|2 <∞,

it follows that MLRµ1 = MLRµ2 . Thus, if we can define such Θ satisfying the given

conditions, then we will have

∞∑
i=1

∣∣∣∣pi − 1

2

∣∣∣∣2 <∞,
and hence MLRµΘ

= MLR.

To define Θ, we sketch the main idea and leave the details to the reader. To

define p1, we look for a finite, prefix-free collection of strings {σ1, . . . , σk} such that

Iσ1 ∪ . . . ∪ Iσk = [0,
1

2
− ε1],

for some ε1 <
1
2
, where Iσ is as defined in the proof of Theorem 4.4 (we can find such

a collection effectively because µ is atomless). Then we define Θ so that extensions

of each σi is mapped to extensions of 0 (and reals that extend none of the σi’s are

mapped to extensions of 1). Thus p1 =
∑

i≤k µ(σi).

Now we repeat this procedure, partitioning the intervals [0, 1
2
− ε1] and [1

2
− ε1, 1]
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each into two intervals, each of which is determined by a finite, prefix-free collection

of strings, just as we partitioned the interval [0,1] above, but we must make sure

that ratios of the sizes of the components of each partition is the same, i.e. the left

component of each is p2 times the length of the given interval, where p2 is within

1
4

of 1
2
. In so doing, we will get four collections of strings, extensions of which will

be mapped to extensions of 00,01,10,11 (depending on which of the four partitions

the sequences are contained). Continuing this procedure, we will eventually define

Θ with the desired properties.

Proof of Proposition 4.27. The real constructed in the proof of Theorem 4.19 above,

Ω∗, is random with respect to the induced measure λΦ (which is clearly atomic),

and hence Ω∗ ∈ MLRcomp. Suppose, for sake of contradiction, that Ω is random

with respect to a computable, atomless measure µ. Then by Proposition 4.28, there

is a tt-functional Θ such that MLRµΘ
= MLR. Moreover, by the preservation of

Martin-Löf randomness, it follows that Θ(Ω∗) ∈ MLRµΘ
= MLR. But as we proved

in Theorem 4.19, Ω∗ can’t even wtt-compute any Y ∈ MLR, yielding the desired

contradiction. Thus Ω∗ ∈ NCRcomp.

We can use the idea of this proof to provide a full classification of the Martin-Löf

random Turing degrees containing elements in MLRcomp ∩NCRcomp. In providing the

classification, we will use the following.

Proposition 4.29 ([RS08], Proposition 5.7). For A ∈ MLR and B ∈ 2ω, if A ≡tt B,

then B /∈ NCRcomp.
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Theorem 4.30. Let a be a Martin-Löf random Turing degree. Then there is some

A ∈ a such that A ∈ MLRcomp ∩ NCRcomp if and only if a is hyperimmune.

Proof. For the easier direction, suppose a is hyperimmune-free. Then given A ∈

a∩MLR, by a well-known result about sets of hyperimmune-free degree, if B ≡T A,

then B ≡tt A. Thus for any B ≡T A, by the preservation of randomness, we

have B ∈ MLRcomp. By Proposition 4.29, B ≡tt A implies that B /∈ NCRcomp;

i.e., B is random with respect to some atomless measure. Thus, no B ∈ a is in

MLRcomp ∩ NCRcomp.

Now suppose that a is hyperimmune, and let A ∈ a∩MLR. We proceed as in the

proof of Theorem 4.24, with a slight modification. Let f ∈ a be a function that is

not dominated by any computable function. Then there is some Turing functional

Ψ such that ΨA(n) = f(n) for every n. Then, as in the proof of Theorem 4.24, we

define a functional Γ such that

Γ(C) = 1t0 0C(0)+1 1t1 0C(1)+1 1t2 0C(2)+1 . . . ,

where ti is the least t such that ΨC(i)[t]↓, unless no such t exists, in which case

ti = +∞. We code the sequence C into Γ(C) so that if the (i + 1)st block of 0s

in Γ(C) has length 1, then C(i) = 0, and if the (i + 1)st block of 0s in Γ(C) has

length 2, then C(i) = 1. Thus, we have Γ(A) ≡T A. Further, by the preservation of

randomness, we have Γ(A) ∈ MLRcomp. Now let g : ω → ω be the function such that

Γ(A) = 1g(0) 0A(0)+1 1g(1) 0A(1)+1 1g(2) 0A(2)+1 . . .
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Given the convention that for the least t such that ΨC(i)[t]↓ = k, we have k ≤ t,

it follows that f(n) ≤ g(n), and hence g(n) is not dominated by any computable

function.

We verify Γ(A) is not complex as before, with the only difference being that we

now have to consider the potentially doubled 0s, yielding

Km(1g(0) 0A(0)+1 1g(1) 0A(1)+1 . . . 1g(n) 0A(n)+11g(n+1)) ≤ 2n · log g(n) ≤ g(n) log g(n).

All the other steps proceed as before, and thus Γ(A) is not complex. Assuming that

Γ(A) is random with respect to some atomless measure, we can argue as in the proof

of Proposition 4.27 that Γ(A) must tt-compute a Martin-Löf random sequence. This

contradicts the fact that Γ(A) is not complex. Thus, Γ(A) ∈ NCRcomp.

Every hyperimmune degree contains a weakly 1-generic real, and no weakly 1-

generic real is Martin-Löf random with respect to any computable measure (as is

shown in [MSU98], Theorem 9.10). Therefore, we have an even stronger dichotomy:

Every hyperimmune-free random degree contains only reals that are random with

respect to some computable atomless measure, while every hyperimmune random

degree contains reals that are random only with respect to some computable atomic

measure as well as reals that aren’t random with respect to any computable measure.

4.5.2 Random Computably Enumerable Sets

In this last subsection, we will show that the preservation of randomness and

related results also have consequences for the study of random computably enu-
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merable sets. In particular, we show the existence of a computably enumerable set

that is random with respect to some computable measure. This is somewhat sur-

prising, given that computably enumerable sets are far from Martin-Löf random.

For instance, every c.e. set X has low initial segment complexity: for every n,

K(X�n) ≤ 2 log(n)+O(1). Despite this behavior, there are c.e. sets that are Martin-

Löf random with respect to some computable measure, as we now demonstrate. This

result was obtained independently by Reimann and Slaman.

Theorem 4.31. There exists a non-computable c.e. set C and some µ ∈ Mc such

that C is random with respect to µ.

Proof. Let (qn)n∈ω be an effective enumeration of Q2. Let Ξ : 2ω → 2ω be the map

defined by

Ξ(X) = {n | qn < X}

where we see the input as an infinite binary sequence and the output as a set of

integers. Clearly Ξ is a computable one-to-one map, hence the measure µ it induces

on 2ω is computable and atomless, and for every random X, Ξ(X) is µ-random. If

X is left-c.e., then by definition of Ξ, Ξ(X) is a c.e. set. Therefore, C = Ξ(Ω) is both

c.e. and µ-random.

We can also show that there is a non-computable c.e. member of MLRcomp∩ NCRcomp.

Theorem 4.32. There is a non-computable c.e. set C such that C ∈ MLRµ for some

computable atomic measure µ but C /∈ MLRν for any computable atomless measure ν.

Proof. To prove this result, we merely need to show that Ω∗, the real constructed

in the proof of Theorem 4.19, is left-c.e. and then apply the map Ξ defined above
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to produce a c.e. set C that is tt-reducible to Ω (via the composition of Ξ with

the functional Φ defined in the proof of Theorem 4.19). Then C cannot be random

with respect to any atomless computable measure, for as we argued in the proof of

Proposition 4.27, this would mean that C, and hence Ω∗, can tt-compute a Martin-

Löf random sequence.

To see that Ω∗ is left-c.e., notice that Φ is a non-decreasing functional and Φ is

continuous at Ω. Therefore, for a rational q, we have

q < Ω∗ ⇔ ∃X [X < Ω ∧ Φ(X) > q]

The right-hand side of the equivalence is a Σ0
1 predicate. Therefore, the left cut of

Ω∗ is c.e., which means that Ω∗ is left-c.e.

A few remarks are in order. First, if a non-computable c.e. set is Martin-Löf

random with respect to a computable probability measure, then it must be Turing

complete. Indeed, by Demuth’s theorem, such a real must be Turing equivalent to a

real that is Martin-Löf random for Lebesgue measure. Kučera [Kuč85] proved that

a c.e. set that can compute a Martin-Löf random real must be Turing complete.

The family of c.e. sets that are random for some computable probability measure

is not downwards closed in the Turing degrees. However, this family is closed down-

wards in the tt-degrees, by Demuth’s theorem. Given a tt-functional Φ and a c.e. set

C that is random with respect to a computable measure µ, if Φ(C) is c.e., then it

is either computable or Turing complete, and in both cases, it will be random with
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respect to the measure induced by (µ,Φ). It is natural to ask whether the family of

c.e. random sets forms a tt-ideal. The answer is negative.

Proposition 4.33. The c.e. random sets do not form a tt-ideal.

Proof. Let A ∈ 2ω be a left-c.e., Turing incomplete sequence and X1 ∈ 2ω a left-c.e.

random sequence. Set X2 = X1 + A and notice that X2 is left-c.e. and random as

the sum of a random left-c.e. real and a left-c.e. real [DH10, Chapter 8].

We map X1 and X2 to c.e. sets via Ξ: Y1 = Ξ(X1) and Y2 = Ξ(X2). Then both

Y1 and Y2 are c.e. and random with respect to the measure µ induced by Ξ.

Since Ξ is a total computable map, its range is a Π0
1 class, which we will denote

by D. Since Ξ is one-to-one, we can define the functional Ξ−1, which is actually a

Turing functional with domain D. Since for all Z ∈ D, the set {X : Ξ(X) = Z} is a

Π0
1(Z) class containing only one element, that element X can be found computably

in Z. Note that a partial functional defined on a Π0
1 class can be extended to a total

functional, since we can effectively determine those σ on which the partial functional

is not defined. Let Λ be a tt-functional which is an extension of Ξ−1 to the entire

space 2ω.

Now, suppose that the join Y1 ⊕ Y2 is random with respect to some computable

measure ν. Consider the functional Ψ defined by Ψ(Z1⊕Z2) = |Λ(Z1)−Λ(Z2)|. This

is a tt-functional, and Ψ(Y1⊕Y2) = A. By the preservation of Martin-Löf randomness,

this means that A ∈ MLRνΨ
. This contradicts the fact that an incomplete left-c.e.

sequence cannot be Martin-Löf random with respect to any computable measure.
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CHAPTER 5

TALLY FUNCTIONALS, TRIVAL MEASURES, AND DIMINUTIVE

MEASURES

5.1 Introduction

In this chapter, we study two classes of computable measures, diminutive com-

putable measures and trivial computable measures. We’ve already encountered ex-

amples of each kind of measure in the previous chapter: the measure induced by the

functional used in the proof of Theorem 4.19 is a trivial measure, while the measures

induced by the functionals used in the proofs of Theorem 4.24 and Theorem 4.30 are

diminutive measures. Before we look more closely at the classes of measures, we will

first consider some general features of the functionals used in the proofs of Theorem

4.19, Theorem 4.24, and Theorem 4.30, which we will henceforth refer to as tally

functionals.

5.2 Tally Functionals

The main tool used in the construction of various diminutive and trivial measures

are what are called “tally functionals”. Let Θ(X, y, z) be a formula in the language

of second-order arithmetic with no set quantifiers and no number quantifiers (but
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possibly bounded number quantifiers) with free first-order variables y, z and free

second-order variable X. Then we define an auxiliary function θ(A, n) : 2ω × ω → ω

by

θ(A, n) =

 the least s such that Θ(A, n, s) if s exists

+∞ otherwise.

Clearly, the function θ(A, ·) : ω → ω is A-computable. Then the tally functional ΦΘ

determined by the formula Θ is defined to be

ΦΘ(A) = 1θ(A,0) 0 1θ(A,1) 0 1θ(A,2) 0 . . . ,

where

ΦΘ(A) = 1θ(A,0) 0 1θ(A,1) 0 . . . 1θ(A,k) 0 1ω

if θ(A, k + 1) = +∞ (and k + 1 is the least number such that θ(A, k + 1) = +∞).

As stated in the introduction, we’ve already encountered several examples of tally

functionals.

Example 5.1. Let Θ1(X,n, s) be the formula

X�n ≤ Ωs,

where {Ωs}s∈ω is a computable, non-decreasing sequence of rationals converging to
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Ω. Then θ1(X,n) is defined to be

θ1(X,n) =

 the least s such that X�n ≤ Ωs if s exists

+∞ otherwise
.

Then the tally functional ΦΘ1 is precisely the functional used in the proof of

Theorem 4.19.

Example 5.2. Let Θ2(X,n, s) be the formula

ΨX(n)[s]↓,

where Ψ is a Turing functional such that

{A : Ψ(A) is total and is not dominated by any computable function}

has positive measure, which exists by the proof of Miller and Martin [MM68] that

every set of hyperimmune degree computes a function not dominated by any com-

putable function. In this case θ2(X,n) is defined to be

θ2(X,n) =

 the least s such that ΨX(n)[s]↓ if s exists

+∞ otherwise
.

Then ΦΘ2 is defined like the tally functional used in the proof of Theorem 4.24.

Another useful example that we have yet to discuss is the tally functional in terms

of the approximation of a ∆0
2 Martin-Löf random sequence A.
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Example 5.3. Given A ∈ ∆0
2 ∩MLR, there is a computable sequence of finite sets

{As}s∈ω such that

lim
s→∞

As(n) = A(n)

for every n. Without loss of generality, we can assume that As 6= As+1 for every s.

Now let Θ3(X,n, s) be the formula

X�n = As�n,

so that

θ3(X,n) =

 the least s such that X�n = As�n if s exists

+∞ otherwise
.

As the tally functional ΦΘ3 defined in this way for A ∈ ∆0
2 will feature prominently

in our later discussion, let us call ΦΘ3 the tally functional given by A, denoted ΦA.

5.3 Trivial and Diminutive Measures

The measures induced by various tally functionals are of central interest here.

5.3.1 On Trivial Measures

Recall that µ ∈ 2ω is trivial if µ(Atomsµ) = 1.

Proposition 5.4. The measure µ1 induced by the tally functional ΦΘ1 is trivial.

Proof. To see that µ1 is trivial, note that from the proof of Theorem 4.19 it follows
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that if A 6= Ω, then either ΦΘ1(A) = σ_(1k0)ω for some σ ∈ 2<ω and k ∈ ω (in the

case that A < Ω as real numbers) or ΦΘ1(A) = σ1ω for some σ ∈ 2<ω (in the case

that A > Ω as real numbers). Thus ΦΘ1 maps 2ω \ {Ω} into a subset of

S = {Y ∈ 2ω : (∃σ ∈ 2<ω)(∃k)[Y = σ_(1k0)ω]} ∪ {Y ∈ 2ω : (∃σ ∈ 2<ω)[Y = σ1ω]}.

In particular, by the preservation of Martin-Löf randomness,

ΦΘ1(MLR \ {Ω}) ⊆ MLRµ1 ∩ S,

from which it follows that λ(Φ−1
Θ1

(S)) = 1. Since S consists entirely of computable

sequences, S ∩ ran(ΦΘ1) = Atomsµ1 . Therefore, µ1(Atomsµ1) = 1.

Despite the fact that µ1 is trivial, not every X ∈ MLRµ1 is a µ1-atom.

Proposition 5.5. MLRµ1 \ Atomsµ1 6= ∅.

Proof. From the proof of Theorem 4.19, we see that

ΦΘ1(Ω) = 1f(1)01f(2)01f(3)0 . . . ,

where Ωf(n)�n = Ω�n for every n. Thus, ΦΘ1(Ω) is not computable, but by the

preservation of Martin-Löf randomness, ΦΘ1(Ω) ∈ MLRµ1 . Therefore,

ΦΘ1(Ω) ∈ MLRµ1 \ Atomsµ1 .
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We postpone the description of the tally functional ΦΘ2 until the next section,

and instead consider ΦΘ3 .

Theorem 5.6. The measure µ3 induced by the tally functional ΦΘ3 is trivial, and

yet MLRµ3 \ Atomsµ3 6= ∅. In fact, MLRµ3 = {ΦΘ3(A)} ∪ Atomsµ3.

To prove Theorem 5.6, we first need a lemma.

Lemma 5.7. (i) If X = As for some s, then there is some m such that for every

n ≥ m, θ3(X,n) = θ3(X,m), i.e. the function f(x) = θ3(X, x) is eventually

constant.

(ii) If X 6= A and X 6= As for each s, then θ3(X,n) = +∞ for some n.

(iii) The function g(x) = θ3(A, x) is not computable.

Proof. (i) Let s be least such that X = As. If s = 0, then since for all n, X�n = A0�n,

it follows that θ3(X,n) = 0 for all n. Now suppose that s > 0. There is some m such

that X�m 6= As−1�m. It follows that X�n = As�n for all n ≥ m, which means that

θ3(X,n) = s for all n ≥ m.

(ii) First we establish the following claim: There is some k such that for every s,

X�k 6= As�k. Suppose not, so that for every k, there is some s such that X�k = As�k.

But this implies that for every k, there exist infinitely many s such that X�k = As�k,

since (a) X 6= As for every s and (b) X�k = As�k implies that X�j = As�j for every

j < k. Now for each k, there is some sk such that A�k = At�k for every t ≥ sk.

It follows that there is some t ≥ sk such that X�k = At�k, and hence X�k = A�k.
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Since this holds for every k, it follows that X = A, contradicting our hypothesis. Let

k be least such X�k 6= As�k for every s. Then θ3(X, k) = +∞.

(iii) If g(n) = θ3(A, n) were computable, then since

Ag(n)�n = Aθ(A,n)�n = A�n,

this would imply that A is computable, contradicting our assumption that

A ∈ MLR.

Proof of Theorem 5.6. First we show that µ3 is trivial. Given input X, here are

three cases to consider to determine the output ΦΘ3(X):

Case 1: X = As for some s. In this case, by Lemma 5.7 (i), the function f(x) =

θ(X, x) is eventually constant. Therefore, ΦΘ(A) = σ1k01k01k0 . . . for some σ ∈ 2<ω,

and hence ΦΘ(X) is computable.

Case 2: X 6= A and X 6= As for every s. By Lemma 5.7 (ii), there is some n such

that θ(X,n) = +∞. Then ΦΘ(A) = σ1ω for some σ ∈ 2<ω, and hence, as above,

ΦΘ(X) is computable.

Case 3: X = A. By Lemma 5.7 (iii), since g(n) = θ3(A, n) is not computable, it

follows that

ΦΘ3(A) = 1θ3(A,0) 0 1θ3(A,1) 0 1θ3(A,2) 0 . . . ,

is not a computable sequence.

It follows that for every B ∈ MLR such that B 6= A, ΦΘ3(B) = σ1ω for some

σ ∈ 2<ω (since B 6= As for every s, as each As is finite and hence computable).
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Setting

S = {Y : (∃σ ∈ 2<ω)[Y = σ1ω]},

we have

MLR \ {A} ⊆ Φ−1
Θ3

(S).

From this it follows that

1 = λ(MLR \ {A}) ≤ λ(Φ−1
Θ (S)).

Since λΦΘ
assigns measure one to the countable collection S, λΦΘ

is trivial.

To verify that MLRµ3 = {ΦΘ3(A)} ∪ Atomsµ3 , first observe that by Theorem 4.5,

MLRµ3 = ΦΘ3(MLR).

As shown in Case 2 above,

ΦΘ3(MLR \ {A}) ⊆ {σ1ω : σ ∈ 2<ω}.

By the preservation of randomness, it follows that ΦΘ3(MLR \ {A}) ⊆ Atomsµ3 (and

in fact that ΦΘ3(MLR \ {A}) = Atomsµ3). However, ΦΘ3(A) ∈ MLRµ3 \ Atomsµ3 by

the preservation of Martin-Löf randomness and the fact that ΦΘ3(A) is not a µ-atom,

as shown in Case 3 above. It follows that

MLRµ3 = ΦΘ3(MLR) = {ΦΘ3(A)} ∪ Atomsµ3 .
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Not every measure induced by a tally functional is trivial.

Proposition 5.8. The measure µ2 induced by the tally functional ΦΘ2 is not trivial.

Proof. The functional Ψ, in terms of which we defined the tally functional ΦΘ2 , has

the property that

S = {A : Ψ(A) is total and is not dominated by any computable function}

has positive measure. In particular, one can show that λ(S ∩ 2MLR) > 0. If A ∈

S ∩ 2MLR, then

ΦΘ2(A) = 1g(0)01g(1)01g(2) . . .

where g is not dominated by any computable function (since for each n ∈ ω, g(n) is

the least such that Ψ(A)(n)[g(n)]↓ and thus Ψ(A)(n) ≤ g(n)). Then ΦΘ2(A) is not

computable. It follows that

ΦΘ2(S ∩ 2MLR) ∩ Atomsµ2 = ∅.

Thus, µ2(Atomsµ2) < 1.

5.3.2 On Diminutive Measures

We now consider the collection of “diminutive” computable measures. These are

measures that are defined in terms of “computably perfect” classes.
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Given A ∈ 2ω, the collection of extendible nodes of A is defined to be

Ext(A) = {σ ∈ 2<ω : (∃X ∈ A)[σ ≺ X]}

Definition 5.9. A ⊆ 2ω is computably perfect if there is a computable, strictly

increasing function f such that for every n ∈ ω and σ ∈ Ext(A) such that |σ| = f(n),

there exist τ0, τ1 � σ such that τ0, τ1 ∈ Ext(A) and |τ0| = |τ1| = f(n+ 1).

For µ ∈ Mc, let P̂i be the complement of the ith member of the universal µ-

Martin-Löf test.

Definition 5.10. A measure µ ∈ Mc is diminutive if for each i ∈ ω, P̂i does not

contain a computably perfect subclass.

This notion of a diminutive measure can be seen as an extension of the notion of

a diminutive class, first studied by Binns in [Bin03].

Definition 5.11 ([Bin03]). A ⊆ 2ω is diminutive if A does not contain a computably

perfect subclass.

The next lemma says that we could give an alternate definition, saying that µ is

diminutive if no P̂i contains a computably perfect Π0
1 subclass.

Lemma 5.12 ([Bin08]). Let P ⊆ 2ω be a Π0
1 class. If P does not contain a com-

putably perfect Π0
1 subclass, then P is diminutive.

Proof. If P is not diminutive, then P contains a computably perfect subclass A. Let

P =
⋂
s∈ω Ps and let f be the function witnessing the fact that A is computably
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perfect. We define

S = {σ : (∃s)(∃n ≤ s)[σ ∈ Ext(Ps) ∧ |σ| = f(n) ∧ (∃!τ ∈ Ext(Ps))[τ � σ ∧ |τ | = f(n+1)]]}

Then JSK is Σ0
1, and hence P \JSK is a computably perfect Π0

1 class containing A.

Definition 5.13. A ⊆ 2ω is a wtt-cover of 2ω if for every X ∈ 2ω, there is some

A ∈ A such that X ≤wtt A.

The key result about diminutive Π0
1 classes is the following.

Theorem 5.14 (Binns, [Bin08]). Let P be a Π0
1 class. Then the following are equiv-

alent:

(1) P is diminutive;

(2) P contains no complex element;

(3) P does not contain a wtt-cover of 2ω.

The equivalence of (1) and (2) is noteworthy, for it allows us to conclude that the

measures we considered at the beginning of this section are diminutive. Note that

this result also generalizes the Kučera-Gács Theorem, Theorem 2.88. We can thus

characterize diminutive measures as those measures that yield a notion of randomness

for which the Kučera-Gács Theorem fails.

Corollary 5.15. The measures λΘ1 , λΘ2, and λΘ3 are diminutive.

Proof. This follows immediately from Theorem 5.14 and the fact that for i = 1, 2, 3,

if X ∈ MLRλΘi
, then X is not complex.
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5.3.3 Some Questions

Note that since λΘ2 is diminutive but not trivial, it follows that not every diminu-

tive computable measure is trivial. While we have seen two examples of trivial com-

putable measures that are also diminutive, it is not clear that every trivial computable

measure is diminutive.

Question 5.16. Is every trivial computable measure diminutive?

There are a number of other related questions that might help answer Ques-

tion 5.16.

Question 5.17. If µ ∈ Mc is trivial, does it follow that no X ∈ MLRµ \ Atomsµ is

complex?

Equivalently, one can ask:

Question 5.18. If µ ∈ Mc is trivial, is there some X ∈ MLRµ \ Atomsµ such that

X ∈ MLRν for an atomless ν ∈Mc?

Note that if µ ∈ Mc is trivial and X ∈ MLRµ \ Atomsµ, then µ-atoms must be

dense along X. Otherwise, there is some n such that JX�nK∩Atomsµ = ∅, and hence

µ(X�n) = 0. Thus, if Φ is the Turing functional that induces µ, and Z ∈ MLR is

such that Φ(Z) = X, then there are infinitely many n such that Φ−1(JX�nK) contains

a Π0
2 class that Φ maps to some A ∈ Atomsµ (since Φ−1(A) is Π0

2(A) and hence Π0
2,

as A is computable). This suggests that sequences like X might only occur in some

“nicely” definable Turing degrees.

Question 5.19. Which Turing degrees contain some X ∈ MLRµ \ Atomsµ for some

trivial µ ∈Mc?
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5.4 Separating Classes of Non-Uniform Randomness

In this section, we show how one can separate notions of randomness with respect

to trivial measures. As a warm-up, we consider the case of weak 3-randomness.

Proposition 5.20. If µ ∈Mc is trivial and X ∈ MLRµ \ Atomsµ, then X /∈ W3Rµ.

Hence W3Rµ = Atomsµ.

Proof. Note that MLRµ is a Σ0
1 class. Moreover, since

Atomsµ = {X ∈ 2ω : (∃ε ∈ Q)(∀n)µ(X�n) > ε},

we see that Atomsµ is a Σ0
3 class (as the predicate µ(σ) > 0 is Σ0

1). Thus MLRµ \

Atomsµ is the intersection of a Σ0
2 class and a Π0

3 class, and hence is Π0
3. But since

µ(MLRµ \ Atomsµ) = 0, it follows that it contains no weakly 3-random with respect

to µ.

This result can be improved for some computable measures.

Theorem 5.21. There is a trivial µ ∈Mc such that (i) MLRµ \Atomsµ 6= ∅ and (ii)

X ∈ MLRµ \ Atomsµ implies that X /∈ W2Rµ. Hence W2Rµ = Atomsµ.

Proof. Let A ∈ MLR \ W2R. Then there is some Turing functional Φ and a non-

computable ∆0
2 sequence B such that Φ(A) = B. Let Θ(X,n, s) be the formula

(∀k < n)Φs(X)(k)↓ = Bs(k)
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where {Bs}s∈ω is the ∆0
2 approximation of B. Then θ is defined to be

θ(X,n) =

 the least s such that (∀k < n)Φs(X)(k)↓ = Bs(k) if s exists

+∞ otherwise
.

Now, it follows that

ΦΘ(A) = 1h(0)01h(1)0 . . .

where h(n) := θ(A, n). We claim that h is not dominated by any computable

function. Otherwise, if f is computable such that f(n) ≥ h(n) for every n, then

Φf(n)(A)(k)↓ = Bf(n)(k) for every k < n. Since Φf(n)(A)(k) = Φ(A)(k) = B(k),

it follows that Bf(n)�n = B�n for every n, contradicting the assumption that B is

not computable. If µ is the measure induced by ΦΘ, then ΦΘ(A) ∈ MLRµ \ Atomsµ.

Moreover, we have ΦΘ(A) /∈ W2R, since ΦΘ(A) ≥T B and thus ΦΘ(A) does not form

a minimal pair with ∅′.

Next, consider X ∈ W2R. If Φ(X)↑, then there is some least n such that

Φ(X)(n)↑, and so θ(X,n) = +∞. Consequently,

ΦΘ(X) = σ1ω (5.1)

for some σ ∈ 2<ω. Otherwise, since Φ(X) 6= B, we claim that

(∃n)(∀s)(∃k < n)[Φs(X)(k)↓ ⇒ Φs(X)(k) 6= Bs(k)]. (5.2)
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Suppose not. Then

(∀n)(∃s)(∀k < n)[Φs(X)(k)↓ = Bs(k)]. (5.3)

Now, let k be such that Φ(X)(k) 6= B(k), and let s be such that Φs(X)(k)↓ and

Bt�(k + 1) = B�(k + 1) for all t ≥ s. Then for sufficiently large n, for every s > n,

Φs(X)(k)↓ 6= Bs(k),

contradicting Equation 5.3. Then let n be the least satisfying Equation 5.2, and so

we have θ(X,n) = +∞, and thus Equation 5.1 holds.

Lastly, suppose that X ∈ MLRµ \ Atomsµ. Then by Theorem 4.5, X ∈ MLRµ

implies that there is some Y ∈ 2ω such that ΦΘ(Y ) = X. Further, since X is not

computable, it follows that

ΦΘ(Y ) = 1θ(Y,0)01θ(Y,1) . . . ,

where θ(Y, n) < +∞ for every n ∈ ω. Note that Φ(Y ) 6= B implies that ΦΘ(Y ) = X

is computable, by the same reasoning as when we considered Φ(X) for X ∈ W2R,

so it must be the case that Φ(Y ) = B. But then we have X ≥T B, and hence

X /∈ W2Rµ.

We can also separate MLR and 2MLR with respect to a trivial measure µ. To do

so, we modify the tally functional ΦΘ1 from the proof of Theorem 4.19. Moreover,
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unlike the other measures we’ve considered in this chapter, we can construct µ so

that uncountably many sequences are µ-Martin-Löf random. Lastly, we can even

guarantee that µ is diminutive.

Theorem 5.22. There is a trivial µ ∈Mc such that

(i) |MLRµ| = 2ℵ0,

(ii) X ∈ MLRµ \ Atomsµ implies that X /∈ 2MLR, and

(iii) no X ∈ MLRµ wtt-computes any Y ∈ MLR.

Proof. We define a new functional Ψ that on input A ⊕ B behaves like to the tally

functional ΦΘ1 considered above. However, instead of the tally being given in terms

of 1s, we use the bits of B. Suppose that

ΦΘ1(A) = 1t001t101t20 . . . 1ti0 . . . .

Then we have

Ψ(A⊕B) = bt00 bt11 bt22 . . . b
ti
i . . .

where bi = B(i) for every i. Note that Ψ is total, since ΦΘ1 is total. Further, if

B ∈ 2MLR, then B ∈ MLRΩ and hence Ω⊕B ∈ MLR by van Lambalgen’s Theorem.

It follows from the preservation of Martin-Löf randomness that Ψ(Ω⊕B) is random

with respect to the induced measure λΨ. (i) holds, since

|{Ω⊕B : B ∈ 2MLR}| = |2MLR| = 2ℵ0
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and Ψ(Ω⊕ A) = Ψ(Ω⊕B) for A,B ∈ 2MLR implies that A = B.

Next, if X ∈ MLRµ \Atomsµ, then X = Ψ(Ω⊕A) for some A ∈ 2MLR. Moreover,

X /∈ 2MLRµ, since we can relativize

To show (ii), note that Theorem 4.5 can be relativized: If X ∈ 2MLRµ, where µ

is induced by some almost total functional ∆, then there is some Y ∈ 2MLR such

that ∆(Y ) = X. Thus if X ∈ MLRµ \ Atomsµ, if X ∈ 2MLRµ, then there is some

Y ∈ 2MLR such that Ψ(Y ) = X. If Ψ(Y ) is not computable, then Y must be equal to

Ω⊕A for some A ∈ 2MLR. No 2-random can have this form, so Ψ(Y ) is computable

and not equal to X.

Finally, as with Ω∗ = ΦΘ1(Ω), Ψ(Ω ⊕ B) is not complex, and thus cannot wtt-

compute any y ∈ MLR. Consequently, µ is diminutive.

We can apply a tally functional to provide a counterexample to a claim made by

Schnorr, namely, that for µ ∈Mc, MLRµ = SRµ if and only if µ is trivial.

Theorem 5.23. There is a trivial µ ∈Mc such that

(a) MLRµ = Atomsµ, and

(b) SRµ \MLRµ 6= ∅.

Proof. To construct the desired measure µ, we define a tally functional Φ in terms of a

universal µ-Martin-Löf test. More specifically, we follow the proof of

Proposition 2.59. Let Θ(X,n, s) be the formula

(∃k)JA�kK ⊆ Un,s.
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Further, we define

θ(X,n) =

 the least s such that (∃k)JA�kK ⊆ Un,s if s exists

+∞ otherwise
.

Let µ be the measure induced by the tally functional ΦΘ. There are two cases of

interest to us here (the case that X 6∈ MLR ∪ SR has no bearing on the result here).

Case 1: X ∈ MLR. In this case, there is some least n such that X /∈ Un, and

hence θ(X,n) = +∞. By the preservation of Martin-Löf randomness, and the

fact that X ∈ Atomsµ implies that ΦΘ(Y ) = X for some Y ∈ MLR, we have

MLRµ = Atomsµ.

Case 2: X ∈ SR \MLR. Then X ∈ ⋂i∈ω Ui. Let f ≤T X be the function from

the proof of Proposition 2.59, where

f(n) = the least s such that (∃k)JX�kK ⊆ Un,s.

This function dominates all computable functions. It follows that θ(X,n) =

f(n), so that

Φ(X) = 1f(0) 0 1f(1) 0 . . .

is not computable, and hence is not a µ-atom. Moreover, by the conservation

of Schnorr randomness, Φ(X) ∈ SRµ, and by Theorem 4.5, Φ(X) /∈ MLRµ.
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CHAPTER 6

TRIVIAL MEASURES AND FINITE DISTRIBUTIVE LATTICES

6.1 Trivial Measures and Finite Distributive Lattices

As further evidence of the “non-triviality” of trivial measures, we show that a

trivial measure gives rise to a certain structure, which varies as we consider different

trivial measures. Specifically, if one considers the LR-degrees (or “low-for-random”

degrees) associated with MLRµ for a class of trivial measures µ, one finds that different

trivial measures can give rise to non-isomorphic LR-degree structures.

Nies [Nie05] gave the following definition in the context of Martin-Löf randomness

with respect to the Lebesgue measure, we say that A is LR-reducible to B, denoted

A ≡LR B if

MLRB ⊆ MLRA.

The intuitive idea is that B is more powerful than A as an oracle, as B de-randomizes

more sequences than A does. We consider the equivalence relation given in terms

of ≤LR, so that A ≡LR B if and only if A ≤LR B and B ≤LR A. The collection

of equivalence classes under this relation is called the collection of LR-degrees, de-

noted by DLR. Like the Turing degrees, the LR-degrees form an uncountable upper

semilattice, but it is a highly complicated structure that is not well-understood.
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We can extend the definition of ≤LR to Martin-Löf randomness with respect to

any µ ∈Mc as follows. For µ ∈Mc and A,B ∈ 2ω, we say that A is LR(µ)-reducible

to B, denoted A ≤LR(µ) B if

MLRBµ ⊆ MLRAµ .

We can define the LR(µ)-degrees, denoted DLR(µ), just as we defined the LR-degrees

above. Let’s consider some examples.

Example 6.1. Let µ ∈Mc be such that µ(Atomsµ) = 1 and Atomsµ = MLRµ. Then

DLR(µ) consists of a single equivalence class, consisting of all of 2ω. The reason is

that if µ({X}) > 0, then X ∈ MLRAµ for every A ∈ 2ω.

Example 6.2. If µ is the measure induced by the tally functional ΦA for

A ∈ ∆0
2 ∩MLR (as in Example 5.3), then DLR(µ) consists of exactly two elements. If

we set A∗ := ΦA(A), then by Theorem 5.6,

MLRµ = {A∗} ∪ Atomsµ

where A∗ is not computable. By Theorem 4.6,

A ∈ MLRB ⇔ A∗ ∈ MLRBµ

for every B ∈ 2ω. Then there are exactly two LR(µ)-degrees, 0 and 1:

0 = {B : A ∈ MLRB},

1 = {B : A /∈ MLRB}.
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Example 6.3. Let A⊕B ∈ MLR ∩∆0
2, and let ΦA and ΦB be the tally functionals

for A and B, and let µ0 and µ1 be the measures induced by ΦA and ΦB, respectively.

By Theorem 5.6,

MLRµ0 = {ΦA(A)} ∪ Atomsµ0 and MLRµ1 = {ΦB(B)} ∪ Atomsµ1

If we set ν :=
µ0 + µ1

2
, by Lemma 2.19, we have

MLRν = MLRµ0 ∪MLRµ1 = {ΦA(A),ΦB(B)} ∪ Atomsµ0 ∪ Atomsµ1 .

Clearly, ν is trivial. There are exactly four LR(ν)-degrees; namely 0, a,b, and 1,

where

0 = {X : A ∈ MLRX ∧ B ∈ MLRX},

a = {X : A ∈ MLRX ∧ B /∈ MLRX},

b = {X : A /∈ MLRX ∧ B ∈ MLRX},

1 = {X : A /∈ MLRX ∧ B /∈ MLRX}.

In particular, we have 0 < a < 1 and 0 < b < 1, but a and b are incomparable.

Thus, DLR(ν) is isomorphic to the finite Boolean algebra on two atoms, pictured in

Figure 6.1.

In the previous three examples we have defined trivial measures µ such that the

associated LR(µ)-degrees are isomorphic to the finite Boolean algebra of one, two,
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a b

0

1

Figure 6.1. The finite Boolean algebra on two atoms

and four elements, respectively. Thus, it is natural to consider whether there is such

a measure for every finite Boolean algebra.

Theorem 6.4. For every finite Boolean algebra B = (B,≤), there is a computable

measure µ such that

(DLR(µ),≤LR(µ)) ∼= (B,≤).

Proof. We proceed in four steps:

Step 1: If n is the number of atoms of B, choose A1, A2, . . . , An ∈ MLR ∩∆0
2 such

that for each J ⊆ {1, . . . , n}, if

XJ =
⊕
j∈J

Aj

then

Ai ∈ MLRXJ

for every i /∈ J .

Step 2: For each Ai, let ΦAi be the tally functional defined in terms of the ∆0
2
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approximation of Ai as in Example 5.3, and define µi to be the measure induced by

the tally functional ΦAi . Let A∗i = ΦAi(Ai).

Step 3: Define µ := 1
n

∑n
i=1 µi. It follows from Lemma 2.19 that

MLRµ =
n⋃
i=1

MLRµi = {A∗1, A∗2, . . . , A∗n} ∪
n⋃
i=1

Atomsµi .

Step 4: We verify that for J,K ⊆ {1, . . . , n}, degµLR(XJ) ≤ degµLR(XK) if and only

if J ⊆ K. First, note that

MLRXJµ = {A∗i : i 6∈ J} ∧ MLRXKµ = {A∗i : i 6∈ K}.

Then

degµLR(XJ) ≤ degµLR(XK)⇔ MLRXKµ ⊆ MLRXJµ

⇔ {A∗i : i 6∈ K} ⊆ {A∗i : i 6∈ J}

⇔ J ⊆ K.

Thus, DLR(µ) = {degµLR(XJ) : J ⊆ {1, . . . , n}} is isomorphic to the powerset of

{1, . . . , n}, which is isomorphic to B.

Theorem 6.4 can be improved further:

Theorem 6.5. For every finite distributive lattice L = (L,≤), there is a computable

measure µ such that

(DLR(µ),≤LR(µ)) ∼= (L,≤).
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The following terminology will be useful in the proof of Theorem 6.5. Let L be a

finite distributive lattice of n elements. We will consider L in terms of levels, where

Level 1 consists of 1L, Level 2 consists of the immediate predecessors of 1L, Level 3

consists of the immediate predecessors of elements of Level 2, and so on. Since L

has size n, there are only finitely many levels (in fact, at most n levels), and since it

is a lattice, the lowest level consists solely of 0L.

Given a, b ∈ L, the meet of a and b, denoted a ∧ b, is the greatest element in L

such that a ≥ a ∧ b and b ≥ a ∧ b. The element c ∈ L is meet-reducible if there are

a, b > c such that a ∧ b = c, and it is meet-irreducible if it is not meet-reducible.

To prove Theorem 6.5, the idea is (i) construct a lattice of sets isomorphic to L,

(ii) use these sets to define a collection of tally functionals, and (iii) define a measure

in terms of these tally functionals, which will give rise to an LR-structure that is

isomorphic to L. Let us first consider an example.

Let L be the finite distributive lattice given below in Figure 6.2.

Figure 6.2. The finite distributive lattice L
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Now let A ∈ MLR ∩∆0
2, and let {Ai}i∈ω be such that

A =
⊕
i∈ω

Ai,

so that each Ai ∈ MLR ∩∆0
2. Hereafter, the sequences A1, A2, . . . will be referred to

as basic sequences. An important feature of these basic sequences is that each Ai is

Martin-Löf random relative to a finite join of any basic sequences that differ from

Ai.

We proceed by associating to each element at each level of L a set consisting of

some of the Ai’s or joins of the Ai’s, yielding a finite distributive lattice of sets that

is isomorphic to L, as in Figure 6.3.

;

{A1} {A2}

{A1, A2}{A1, A1 � A3}

{A1, A2, A1 � A3}

Figure 6.3. A finite distributive lattice of sets isomorphic to L

Level 1: We associate to the top element 1L the empty set.
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Level 2: There are two elements in Level 2, and so we associate to one the set

{A1} and to the other {A2}.

Level 3: There are two elements in Level 3, one of which is meet-reducible

and the other meet-irreducible. To the meet-reducible element, we associate

the set {A1, A2}, and to the meet-irreducible element (which is below the el-

ement associated to the set {A1}, we associate the set {A1, A1 ⊕ A3}, where

A3 is the first basic sequence in {Ai}i∈ω (in the order given by the indices)

that has not appeared in the construction thus far. Note that any sequence

that derandomizes A1 also derandomizes A1 ⊕ A3, but not every element that

derandomizes A1 ⊕ A3 also derandomizes A1 (such as A3 itself).

Level 4: The only element at Level 4 is 0L, the meet of the two Level 3

elements, and thus we associate to this element the set {A1, A2, A1 ⊕ A3}.

Next, for each element in the set associated with 0L, namely A1, A2, and A1⊕A3,

let µA1 , µA2 , and µA1⊕A3 be the measures induced by the tally functionals ΦA1 , ΦA2 ,

and ΦA1⊕A3 defined in terms of the ∆0
2 approximations of A1, A2, and A1 ⊕ A3. We

define

µ :=
1

3
(µA1 + µA2 + µA1⊕A3),

Let

ΦA1(A1) = A∗1,ΦA2(A2) = A∗2, and ΦA1⊕A3(A1 ⊕ A3) = (A1 ⊕ A3)∗.

Then for any X ∈ 2ω,

MLRXµ = Atomsµ ∪ S,
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where S is equal to one of the following:

∅, {A∗1}, {A∗2}, {A∗1, A∗2}, {A∗1, (A1 ⊕ A3)∗}, or {A∗1, A∗2, (A1 ⊕ A3)∗}.

Thus we have a one-to-one correspondence (that preserves ⊆) between the above

sets and those sets associated to the elements of L, and thus (DLR(µ),≤LR(µ)) is

isomorphic to L. Now we proceed in full generality.

Proof of Theorem 6.5. Let L be a finite distributive lattice. We proceed as in the

example. We first associate basic sequences and joins of basic sequences to elements

of the various levels of L.

Level 1: We associate to the top element 1L the empty set.

Level 2: To each of the j ≤ K elements in Level 2, we associate a singleton

consisting of a basic sequence A1, A2, . . . , Ak.

Level n + 1: The set we associate to a Level n+1 element depends on whether

it is meet-reducible or meet-irreducible.

◦ The meet-reducible case: Let a = b∧c, where b and c are Level n elements.

If Sb is the set of sequences associated to b and Sc is the set of sequences

associated to c, then we associate the set Sb ∪ Sc to a. (Note: We will

have to verify that this is well-defined, for it may be the case that there

are Level n elements b′ and c′ that differ from b and c but also satisfy

b′ ∧ c′ = a.)
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◦ The meet-irreducible case: If a is meet-irreducible, then there is only one

Level n element such that a ≤ b. If Sb is the set associated to b, then

we proceed as follows. First, let {Ai1 , Ai2 , . . . , Aik} be the collection of

basic sequences appearing in Sb. That is, these are either elements of Sb
or are contained in joins in Sb (so that, for instance, the basic sequences

appearing in {A1, A2 ⊕ A3} are A1, A2, and A3). Let N ∈ ω be the least

such that the basic sequence AN has not appeared in any set associated

to an element of L. Then to a we associate the set

{ k⊕
j=1

Aij ⊕ AN
}
∪ Sb.

To verify that SL = ({Sa : a ∈ L},≤) is a finite distributive lattice isomorphic to

L (where Sa ≤ Sb if and only if Sa ⊇ Sb), we first show that meets in SL are well-

defined. First, suppose that a, b, c, d ∈ L are distinct elements such a = b∧ c = c∧d,

as in Figure 6.4.

a

b c d

Figure 6.4. The case in which a = b ∧ c = c ∧ d
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We claim that b ∨ c 6= c ∨ d. For otherwise, the lattice M3 (pictured in Figure 6.5

below) would be embeddable into L, contradicting the fact that L is distributive.

Figure 6.5. The lattice M3

Thus, we must have:

b _ c c _ d

a

b c d

Figure 6.6. b ∨ c 6= c ∨ d
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We must have b ∨ d 6= b ∨ c and b ∨ d 6= c ∨ d, for otherwise M3 is embeddable into

L (for instance, Figure 6.7 shows the case that b ∨ d = c ∨ d).

b _ c c _ d

a

b c d

Figure 6.7. The case that b ∨ d = c ∨ d

If e = b∨ c, f = c∨ d, and g = b∨ d, then b = e∧ f, c = e∧ g, and d = f ∧ g, and

thus none of b, c, or d is meet-irreducible.

Now, suppose that

Sb ∪ Sc 6= Sc ∪ Sd (6.1)

Since b = e ∧ f, c = e ∧ g, and d = f ∧ g, it follows that

Sb = Se ∪ Sf ∧ Sc = Se ∪ Sg ∧ Sd = Sf ∪ Sg.
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By (6.1), we have

Se ∪ Sf ∪ Sg = Sb ∪ Sc 6= Sc ∪ Sd = Se ∪ Sf ∪ Sg,

which is impossible. In the case where there are distinct Level n elements b, c, b′, c′

such that a = b ∧ c = b′ ∧ c′, it follows that a = b ∧ c′, and so we apply the above

argument to b, c, c′, and then to b, c, b′ to conclude that

Sb ∪ Sc = Sb′ ∪ Sc′ .

Thus, meets are well-defined.

Next we show that the isomorphism between SL = ({Sa : a ∈ L},≤) and L holds

level by level. In particular, we show that meets and joins are preserved level by

level. First, it is clear that the top two levels of SL and L are isomorphic. Now

suppose that SL and L are isomorphic from Level 1 to Level n. Having associated

to Level n elements a and b the sets Sa and Sb, we associate the set Sa ∪Sb to a∧ b.

Suppose Level n + 1 elements a and b are associated with Sa and Sb. To show

that Sa∨b, the set associated to a ∨ b, is Sa ∩ Sb, we consider three cases.

Case 1: First, if both a and b are meet-irreducible, then either (i) there is some

Level n element c such that a, b ≤ c, or (ii) there are Level n elements c and d such

that c 6= d, a ≤ c, and b ≤ d.

Subcase 1.i: By the procedure given above,

Sa = Sc ∪ {B ⊕ A`}
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and

Sb = Sc ∪ {B ⊕ A`′},

where B is the join (
⊕

) of the basic sequences appearing in Sc and A`, A`′ are basic

sequences not contained in any set associated to elements of Levels k ≤ n. Thus

Sa∨b = Sc = Sa ∩ Sb.

Subcase 1.ii: In this subcase,

Sa = Sc ∪ {B ⊕ A`},

and

Sb = Sd ∪ {D ⊕ A`′},

where B and D are the joins of the basic sequences appearing in Sc and Sd, re-

spectively, and A`, A`′ are basic sequences not contained in any set associated to

elements of Levels k ≤ n. By induction, there is some e ∈ L such that e = c∨ d and

Se = Sc ∩ Sd. Then we have e = a ∨ b and

Sa ∩ Sb = (Sc ∪ {B ⊕ A`}) ∩ (Sc ∪ {D ⊕ A`′}) = Sc ∩ Sd = Se = Sa∨b.

Case 2: If a is meet-irreducible but b is meet-reducible, then again there are two

subcases to consider: Either (i) there is some Level n element c such that a, b ≤ c,

or (ii) there are distinct Level n elements c, d, e such that a ≤ c and b = d ∧ e.
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Subcase 2.i: We have

Sa = Sc ∪ {B ⊕ A`},

where B is the join of the basic sequences appearing in Sc and A` is a basic sequence

not contained in any set associated to any element of Levels k ≤ n, and

Sb = Sc ∪ Sd

for some Level n element d 6= c. Again it follows that

Sa ∩ Sb = (Sc ∪ {B ⊕ A`}) ∩ (Sc ∪ Sd) = Sc = Sa∨b.

Subcase 2.ii: In this subcase, c ∨ (d ∧ e) = a ∨ b. As above,

Sa = Sc ∪ {B ⊕ A`}

and

Sb = Sd ∪ Se.

By the inductive hypothesis, we have Sc ∩ (Sd ∪ Se) = Sc∨(d∧e), and thus

Sa ∩ Sb = (Sc ∪ {B ⊕ A`}) ∩ (Sd ∪ Se) = Sc ∩ (Sd ∪ Se) = Sc∨(d∧e) = Sa∨b.

Case 3: Lastly, in the case that a and b are both meet-reducible, either (i) there are

distinct Level n elements c, d, e such a = c∧ d, and b = d∧ e or (ii) there are distinct
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Level n elements c, d, e, f such that a = c ∧ d and b = e ∧ f .

Subcase 3.i: Since a, b ≤ d, it follows that Sa = Sc ∪ Sd, Sb = Sd ∪ Se, Sc ∩ Se = ∅,

and thus

Sa ∩ Sb = (Sc ∪ Sd) ∩ (Sd ∪ Se) = Sd = Sa∨b.

Subcase 3.ii: Note that a∨ b = (c∧d)∨ (e∧ f). Since Sa = Sc∪Sd and Sb = Se∪Sf ,

by the inductive hypothesis, it follows that

Sa ∩ Sb = (Sc ∪ Sd) ∩ (Se ∪ Sf ) = S(c∨d)∧(e∨f) = Sa∨b.

Having verified that SL is a finite distributive lattice, we now turn to defining

the measure µ. Let

{B1, . . . , Bk}

be the set in SL associated to 0L. By our construction, each Bi is either a basic

sequence or the join of some basic sequences. Further, since the basic sequences are

all in MLR∩∆0
2, and further, each is Martin-Löf random relative to the finite join of

any number of basic sequences that differ from it, it follows from van Lambalgen’s

Theorem (Theorem 2.86) that each Bi ∈ MLR ∩∆0
2.

Let Φi be the tally functional defined in terms of the ∆0
2 approximation of Bi,

and let B∗i = Φi(Bi), so that MLRµi = {B∗i } ∪ Atomsµi . Setting

µ :=
1

k

k∑
i=1

µi,

we claim that (DLR(µ),≤LR(µ)) ∼= (SL,≤). First we show that for each S∗a , there is
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some X ∈ 2ω such that

S∗a ∪ Atomsµ = MLRXµ .

If we let RScope(B) = {X ∈ 2ω : B ∈ MLRX} be the randomness scope of B, note

that by Theorem 4.6,

Bi ∈ MLRX ⇔ B∗i ∈ MLRXµ ,

and hence X ∈ RScope(Bi) if and only if B∗i ∈ MLRXµ . Observe that λ(RScope(B)) =

1 for every B ∈ MLR, since by van Lambalgen’s Theorem, MLRB ⊆ RScope(B) and

λ(MLRB) = 1.

If

S∗a = {B∗i1 , . . . , B∗ij},

then

X =
k⋂
j=1

RScope(Bij) 6= ∅,

since the finite intersection of measure one sets has measure one. Thus for any

X ∈ X , we have MLRXµ = S∗a ∪ Atomsµ.

We claim that for each X ∈ 2ω, there is some a ∈ L such that MLRXµ = S∗a ∪

Atomsµ. Let {A1, . . . , Ak} be the collection of basic sequences appearing in the

elements of SL. Further, for j ≤ k, let {A1, . . . , Aj} be the basic sequences that

make up the singletons assigned to Level 2 elements of L (which we’ll call the Level

Two basic sequences), and let {Aj+1, . . . , Ak} be the basic sequences that added when

we assign sets to meet-irreducible elements of L (which we’ll call the meet-irreducible

basic sequences).
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By our construction, every non-empty Sa contains some Level Two basic sequence.

Thus, given X ∈ 2ω, degµLR(X) is determined in part by which Level Two basic

sequences it derandomizes. In particular, {A1, . . . , Aj} ∩ MLRX = ∅ implies that

MLRXµ = Atomsµ. For each X ∈ 2ω, there is some J ⊆ {1, . . . , j} such that

X ∈
⋂
i∈J

RScope(Ai) ∧ X /∈
⋂

i∈{1,...,j}\J

RScope(Ai). (6.2)

Moreover, for each X ∈ 2ω there is some K ⊆ {j + 1, . . . , k} such that

X ∈
⋂
i∈K

RScope(Ai) ∧ X /∈
⋂

i∈{j+1,...,k}\K

RScope(Ai). (6.3)

Thus, for each X ∈ 2ω there is thus a unique Sa = {Bi1 , . . . , Bij} such that

Sa ⊆ MLRX , determined by the basic sequences for which (6.2) and (6.3) hold.

Consequently, MLRXµ = {B∗i1 , . . . , B∗ij} ∪ Atomsµ.

Every S∗a is the collection of non-atoms in MLRXµ for some X ∈ 2ω, and for every

X ∈ 2ω, there is some S∗a such that MLRXµ = S∗a ∪ Atomsµ. Since X ≤LR(µ) Y if and

only if MLRYµ ⊆ MLRXµ , it follows that

(DLR(µ),≤LR(µ)) ∼= (SL,≤).

6.2 Open Questions

We conclude with several questions.
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Question 6.6. If L = (L,≤) is an infinite, computable, distributive lattice, is there

a trivial measure µ ∈Mc such that

(DLR(µ),≤LR(µ)) ∼= (L,≤)?

Question 6.7. Is there an example of a finite non-distributive lattice L = (L,≤)

and a trivial measure µ ∈Mc such that

(DLR(µ),≤LR(µ)) ∼= (L,≤)?
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CHAPTER 7

PHILOSOPHICAL PERSPECTIVES ON ALGORITHMIC RANDOMNESS

7.1 Motivating the Problem

In the standard presentations of the subject of algorithmic randomness,1 one

regularly finds as motivation for the main definitions of randomness the following

question:

What does it mean for a sequence of 0s and 1s to be random?

There are many ways one can attempt to answer this question, but the various

answers provided by the general theory of algorithmic randomness are of a specific

kind: An infinite sequence is random if it is the sort of sequence that is typically

produced by a random process. Of course, this is imprecise and generally not very

helpful. Which sequences are those that are typically produced by a random process?

Any random process? And what does it mean to be that “sort of sequence”? Slight

progress is made with the restriction to those random processes that are unbiased:

each individual outcome of such a process is equiprobable. In this case, the paradigm

1See, for instance, Computability and Randomness [Nie09], by Andre Nies, published in 2009,
and Algorithmic Randomness and Complexity [DH10] by Rod Downey and Denis Hirschfeldt, pub-
lished in 2010.

164



example of a random process is the repeated tosses of a fair coin. But still, what

is the typical output of such a process? Instead of taking this approach, one might

hold that we should consider as random those sequences that are indistinguishable

from a sequence that is generated by tosses of a fair coin. But then we can ask:

Indistinguishable from whose point of view? And which is the sequence generated by

the tosses of a fair coin to which we are comparing the putatively random sequences?

These are difficult questions, but what the general theory of algorithmic ran-

domness provides for us is a number of ways to make precise notions such as ‘the

typical sequence produced by the tosses of a fair coin’ or ‘being indistinguishable

from such as sequence’. There are, in fact, many ways of sharpening this notion of

random sequence, each of which yields a definition of randomness. What’s more,

while a number of these ways of sharpening yield extensionally equivalent definitions

of randomness, a number of these ways are incompatible with one another; some of

the resulting definitions count certain sequences as random that are not counted as

random by other definitions.

This fact notwithstanding, one particular definition, Martin-Löf randomness, has

been singled out by some as capturing the intuitive conception of randomness, where

this means at a minimum that it captures our commonly held intuitions about ran-

domness.2 Some have even gone so far as to suggest that there is a randomness-

theoretic thesis about Martin-Löf randomness akin to the Church-Turing Thesis

(henceforth, the CTT), the thesis that the collection of effectively calculable number-

2I provide this particular gloss on ‘capturing the intuitive conception of randomness’ to avoid
giving the impression that there is some single conception that is the intuitive conception of ran-
domness.
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theoretic functions is coextensive with the collection of computable number-theoretic

function. Following Jean-Paul Delahaye, I will refer to this thesis as the “Martin-

Löf-Chaitin Thesis” (hereafter, the MLCT).3

According to the MLCT, a sequence is intuitively random if and only if it is

Martin-Löf random. That is, the MLCT asserts the extensional adequacy of Martin-

Löf randomness.

Clearly, establishing the MLCT certainly would be a significant philosophical de-

velopment, just as the formulation of a definition of computability that captures our

commonly held intuitions about computability is widely regarded to be philosophi-

cally significant. As Gödel noted, with the definition of computability “one has for

the first time succeeded in giving an absolute definition of an interesting epistemo-

logical notion, i.e., one not depending on the formalism chosen” ([Göd46], p. 150).

Do we now have yet another “absolute definition of an interesting epistemological

notion” on our hands?

Clearly, this depends on what we take an “absolute definition” to be, as well

as what notion we identify as the relevant “interesting epistemological notion”. If

we understand absoluteness in the sense that it has in Gödel’s remark, the formally

defined class of computable number-theoretic functions is absolute due to the fact

that every formal definition of the class of intuitively computable number-theoretic

functions has the same extension. But this is far from the case with Martin-Löf

randomness: there are a number of alternative definitions of the notion of intuitively

random sequence that do not yield the same extension of random sequences.

3See [Del11].
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Of course, this lack of absoluteness in Gödel’s sense does not necessarily imply

that Martin-Löf fails to capture an interesting epistemological notion: Some have

simply rejected all other alternatives. For instance, in a recent survey on the various

definitions of randomness by A. Dasgupta, we find the following claim:

[W]e believe that while the Martin-Löf-Chaitin thesis is not (yet) as
strong as the Church-Turing thesis, the [. . . problem of . . . ] defining
randomness for sequences [. . . ] that captures our mathematical intuition
of these objects [has] essentially been solved quite satisfactorily. ([Das11],
p. 708)

What’s more, this claim comes after a survey of many non-equivalent definitions of

randomness. For Dasgupta and others, then, the interesting epistemological notion

captured by Martin-Löf randomness is “our mathematical intuition” of random se-

quences or our commonly held intuitions of randomness, even in spite of the presence

of alternative definitions of randomness.

But there is cause for concern. Those who have argued in support of the MLCT

have failed to address a number of fundamental questions that must be answered

before we can count as solved the problem of finding a definition of randomness that

captures our commonly held intuitions about randomness: What exactly are these

commonly held intuitions? Is it even proper to speak of “our mathematical intu-

ition” of randomness in the singular, as Dasgupta does, or to speak of the intuitive

conception of randomness, as others have done? Supposing that there is one con-

ception that falls under the descriptions “the intuitive conception of randomness” or

“our mathematical intuition” of random sequence, what does it mean for a definition

of randomness to capture this intuitive conception or this mathematical intuition?
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On what grounds should we judge that a given definition of randomness adequately

captures our mathematical intuitions of randomness? On what grounds should we

judge that a given definition fails to adequately capture these intuitions?

Moreover, the need for answers to these questions is heightened by the fact that

the alternative definitions of randomness cannot be so easily dismissed. In fact,

some of these alternative definitions are the subject of extensional adequacy theses

that are very similar in form to the MLCT. For instance, Schnorr has claimed that

his definition of randomness, which is strictly weaker than Martin-Löf randomness,4

“captures the true concept of randomness”, while others have claimed that weak

2-randomness, which is strictly stronger than Martin-Löf randomness, captures the

so-called intuitive conception.5

The fact that the above questions have not been addressed, as well as the presence

of alternative theses, should give us some pause before we accept the MLCT. But

there are several more pressing questions that are also left unanswered: Why would

we require of a formal definition of randomness that it capture all of the commonly

held intuitions about randomness to begin with? Are there some purposes for a

formal definition of randomness to fulfill or roles for a definition of randomness to

play that can only be fulfilled or played by a definition that captures these intuitions?

And what would be lost if it proved to be the case that no definition of randomness

could fully capture these intuitions?

4One definition D1 of randomness is weaker than another D2 if every D2-random sequence is
D1-random, but not conversely. In this case, we also say that D2 is stronger than D1.

5See, for instance, [OW08].

168



The main problems that I will consider in this portion of the dissertation are

thus to determine (i) for which purposes we might seek a definition of randomness

that captures our commonly held intuitions of randomness, (ii) how one might go

about justifying the claim that some definition D captures these intuitions, and (iii)

whether there is an alternative approach to the definitions of randomness that does

not require of them that they capture all of our intuitions of randomness but still

acknowledges their use as legitimate formalizations of these intuitions.

7.2 A Conceptual Analysis of Randomness?

One natural starting point for addressing these questions is the suggestion that

a formal definition of randomness can serve as the basis of a conceptual analysis

of the notion of randomness; that is, such a definition can provide necessary and

sufficient conditions for the correct application of the concept of randomness. On

this approach, the MLCT can be read as stating that Martin-Löf randomness provides

a conceptual analysis of the notion of randomness, fulfilling what I’ll henceforth call

the conceptual-analytic role of randomness.

Should we thus accept the claim that Martin-Löf randomness provides a concep-

tual analysis of the notion of randomness? Or should we accept the claim that some

other currently available definition of randomness provides a conceptual analysis of

the notion of randomness? Or might we hold that the formal definitions of random-

ness that we find in the general theory of algorithmic randomness do not successfully

play the conceptual-analytic role, but some other role(s)?

It is this latter approach that I develop and argue for here. But my goal is not
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merely to highlight some roles other than the conceptual-analytic role and argue that

these other roles are successfully filled by definitions such as Martin-Löf randomness

and other definitions of algorithmic randomness. Rather, my goal is three-fold:

(1) to argue that for any definition of randomness D that has a well-defined, def-

inite extension, the advocate of the claim that D-randomness captures our

commonly held intuitions of randomness faces a serious challenge to justify

this claim, which I call the Justificatory Challenge;

(2) to present an alternative approach to the various definitions of randomness

that does not face the Justificatory Challenge, as it is based on two roles of

randomness, which I call the calibrative role of randomness and the limitative

role of randomness, each of which is successfully filled by multiple definitions

of randomness; and

(3) to argue that this alternative approach further shows that what mathematicians

have considered to be significant about the concept of randomness cannot be

captured by one single definition, but that multiple definitions are necessary

to capture these truths.

Moreover, I claim that (1)-(3) provide good reason to hold what I call the No-Thesis

Thesis :

The No-Thesis Thesis: No definition of randomness that has a definite,

well-defined extension can capture the prevailing intuitive conception of

randomness.

The details of my argument will be sketched briefly in the following chapter outline.
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7.3 Outline of the Chapters

Prior to carrying out the steps (1)-(3) described above, I carry out several tasks.

First, I consider the contributions of two figures central to the development of algo-

rithmic randomness, Richard von Mises (in Chapter 8) and Jean Ville (in Chapter

9). Although both von Mises’ and Ville’s contributions predate the use of effective

methods in the task of defining randomness, both made serious attempts at defining

randomness which led to important breakthroughs that would later inform the work

of such figures as Martin-Löf and Schnorr, whose work on algorithmic randomness

in the late 1960s and early 1970s laid the foundation for much of the research in

algorithmic randomness that continues today.

Not only did von Mises and Ville make important technical contributions, but

each identified a role for definitions that informed the definitional task in which they

were engaged. On von Mises’ approach, a definition of randomness was necessary to

serve as a foundation of his theory of probability, and more specifically, randomness

play a central role in the task of solving problems in the probability calculus, a role

I refer to as the resolutory role of randomness. Ville, on the other hand, was not

interested in using randomness to solve problems, but rather, Ville sought a definition

D of randomness with the property that every D-random sequence is a paradigmatic

instance of a sequence chosen at random. Such a definition would fill what I call the

exemplary role of randomness, as the D-random sequences would be exemplars of

randomly chosen sequences.

But this role is a puzzling one, and it proves to be quite problematic. For not only

is it not clear which properties a sequence should satisfy in order for it to exemplify
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the randomness of a sequence chosen at random, it is not clear what we gain from a

definition that successfully fills the exemplary role.

After considering the accounts of both von Mises and Ville in Chapters 8 and 9,

in Chapter 10 I consider the status of the MLCT. In particular, I consider the main

evidence offered in support of the MLCT, as well as the main arguments provided

against it. Not only does this chapter help set the stage for my arguments in Chap-

ters 11 and 12, but it also provides a survey of the many arguments both for and

against the MLCT, which is not currently available in the philosophical literature on

algorithmic randomness.

In Chapter 11, I present the Justificatory Challenge to the advocate of the claim

of extensional adequacy of some currently available definition of randomness D . As I

argue, to establish the claim that D captures the intuitive conception of randomness,

the advocate of this claim (henceforth the D-advocate) must provide a sharpening of

the prevailing intuitive conception of randomness that is precise enough to block the

claims of extensional adequacy made concerning alternative definitions of randomness

without undermining the claim of the extensional adequacy of D ; this is precisely

the Justificatory Challenge. Further, I argue that there is no reason to hold that the

D-advocate can meet this challenge.

Lastly, in Chapter 12, I present the calibrative and limitative roles of randomness.

The salient feature of these roles is that can be successfully filled by a definition of

randomness that is not extensionally adequate; in fact, each of these roles are filled

not by an individual definition of randomness, but by an entire family of definitions

of randomness.
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The main features of these two roles are as follows. First, a definition D fills the

calibrative role if and only if there is some notion of “almost-everywhere” typicality

T occurring in classical mathematics such that the D-randomness of a sequence is

necessary and sufficient for that sequence to be T -typical. For instance, given a

theorem of classical analysis of the form “for almost every real number x, Φ(x)”, we

can find a corresponding formula Φ∗ (given by restricting Φ in some way) that still

holds of almost every real number x, and which satisfies

(∀x)[x is D-random if and only if Φ∗(x)]

for some definition of randomness D . What these results suggest is that many defi-

nitions in the family of definitions of randomness can be used to calibrate the degree

of randomness necessary and sufficient to instantiate certain almost-everywhere be-

havior that occurs in classical mathematics.

Second, a definitions of randomness fills the limitative role of randomness by

illuminating an interesting phenomenon that I refer to as the indefinite contractibility

of the notion of absolute randomness. Broadly speaking, that the notion of absolute

randomness is indefinitely contractible means that for every extension E of sequences

that purportedly contains all absolutely random sequences, there is some X ∈ E

that is not absolutely random, where, following a suggestion of Myhill’s, a sequence

is absolutely random if and only if it satisfies no property that is (i) satisfied by

only measure zero many sequences and (ii) is definable without parameters in some

formal system. By means of the various families of definitions of randomness, we can

systematically study this phenomenon of contractibility.

That multiple definitions of randomness successfully fill both of these roles strongly
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suggests that no single definition of randomness captures everything that mathemati-

cians have taken to be significant about the concept of randomness. There are set-

tings in which one definition of randomness is adequate and all others are inadequate

(as illustrated by the calibrative role), but there is no definition that is adequate for

all such settings (as illustrated by both the calibrative and the limitative roles).

This, I claim, gives us good reason to accept the No-Thesis Thesis. For given a

definition of randomness D that purportedly captures the prevailing intuitive concep-

tion of randomness, it will fail to yield the precise amount of randomness necessary

and sufficient for certain purposes. Moreover, if the definition satisfies certain gen-

eral conditions (which is a rather mild assumption), it will be contractible in the

sense mentioned above: there will inevitably be D-random sequences counted as

non-random by a stronger definition of randomness.

If one nonetheless insists that we continue the search for an extensionally adequate

definition of randomness in spite of the evidence that suggests that there is no such

definition to be found, so be it. However, freed from the constraints of the search for

the one correct definition of randomness, we can take these definitions at face value:

the definitions that we already have are good enough for many purposes, and not just

instrumental ones. Not only do these definitions illuminate a number of mathematical

uses of the notion of randomness, but they also illustrate the limitations of the formal

machinery in terms of which such definitions are given. This, I claim, is significant

progress in understanding the concept of randomness.
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CHAPTER 8

THE RESOLUTORY ROLE OF RANDOMNESS

8.1 Introduction

The first explicit definition of randomness for infinite sequences was given by

Richard von Mises in 1919, who sought to develop a theory of probability in which

probability is defined in terms of a notion of randomness, which is itself taken as

primitive. The role that randomness plays in this account, which I call the resolutory

role of randomness is an idiosyncratic one, insofar as it only appears in the context of

a frequentist theory of probability such as von Mises’.1 For on von Mises’ frequentist

approach, the probability of an event is the limiting relative frequency of that event

in an infinite sequence of events, provided that the sequence is sufficiently random.

But why not define probability in terms of any sequence, random or not? Here is

where the resolutory role of randomness comes into play: without some requirement

of randomness, there are certain problems in the probability calculus that cannot be

solved on von Mises’ approach.2 In other words, the role that randomness plays in

1Thus, for instance, this role has no connection to Venn’s frequency theory, as Venn’s definition
does not involve random sequences, nor does it have a place in Kolmogorov’s finite frequency theory.

2The phrase “the probability calculus” or “the calculus of probability” is used by von Mises to
refer to an exact theory of probability (see, for instance, [Mis51], p. 166, in which von Mises states
this explicitly).
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von Mises’ theory of probability is to guarantee that every problem of the probability

calculus can be solved within his theory, an ideal of completeness that I call the

resolutory ideal of completeness.

In this chapter, the bulk of my effort will be directed towards locating the res-

olutory role of randomness in von Mises’ theory of probability. Having sufficiently

outlined the resolutory role, I will then lay out two views as to how a definition or

family of definitions of randomness might adequately fill the resolutory role, thereby

attaining the resolutory ideal of completeness. In particular, whereas von Mises’

held that the resolutory ideal could not be attained by any single definition of ran-

domness, fixed once and for all but rather by a family of definitions, Alonzo Church

suggested that we should not seek to attain the resolutory ideal in full generality (i.e.,

we should not seek a definition of randomness that would enable to solve, in principle,

all problems of the probability calculus), but instead he held that a restricted version

of von Mises’ definition could attain a correspondingly restricted version resolutory

ideal (thereby enabling us to solve all problems in a proper subclass of the class of

problems of the probability calculus).

The outline of the chapter is as follows. First, in Section 8.2, I outline the basic

features of von Mises’ definition of probability as based on the notion of “collective”,

which von Mises’ took to be a formalization of the notion of random sequence. In

Section 8.3, I consider two important objections to von Mises’ definition of probability

and randomness raised by his contemporaries that eventually led von Mises to modify

his account, objections that (i) the theory of collectives is either trivial or inconsistent

and (ii) that collectives are undefinable. In Section 8.4, I consider the most well-
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developed response to these objections, given by Abraham Wald, who proved the

relative consistency of collectives, a result that in turn led to the above-mentioned

modification of von Mises’ account. Next, in Section 8.5, I discuss the way in which

one solves problems of the probability calculus on von Mises’ account. To this end,

I will lay out some of the formal machinery of von Mises’ account, namely four

fundamental operations that allow for the solution of problems of the probability

calculus, and explain how these operations allow for the solution of a problem of the

probability calculus. Moreover, I will highlight the role that randomness plays in

obtaining such a solution. Lastly, in Sections 8.6 and 8.7, I highlight the resolutory

ideal of completeness and outline the two accounts of the resolutory ideal as discussed

above, that of von Mises and that of Church.3

8.2 Von Mises’ Account of Probability

8.2.1 Motivating von Mises’ Definition

In 1919, von Mises presented what he considered to be a “scientifically adequate”

definition of probability in his paper “Grundlagen der Wahrscheinlichkeitsrechnung”

[vM19]. For von Mises, this meant that his definition of probability would be formed

3The main source for the following discussion of von Mises’ work is the second English edition
of von Mises’ book Probability, Statistics, and Truth, which is the translation of the third German
edition, published in 1951. Although von Mises spelled out his ideas in a number of places (see, for
instance, [vM19], [vM31], [vM41], [vM46] and [vM64]), Probability, Statistics, and Truth is perhaps
the best source for the philosophical motivations of von Mises’ theory of probability for two reasons.
First, the book consists of a series of lectures given to a general audience, and as such it is more
conversant with philosophical issues than his more technical work. Second, the book likely contains
von Mises’ views in their most fully matured form, as third German edition contains a number of
changes to the second German edition, including his responses to criticisms of his ideas as they
appeared in earlier work, and was published just two years before his death in 1953.
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following “a method of forming and defining concepts” that “has been developed by

the exact sciences” and “which shows us the way clearly and with certainty” ([vM81],

p. 3). In following this method, one stipulates the scope of a concept such as proba-

bility, and then the merits of that stipulation are judged by determining the extent

to which “it is agreement with what we generally regard as the purpose of science”

([vM81], pp. 6-7). Precisely what von Mises takes this to mean is unclear,4 but for

our purposes, it is sufficient to observe the stipulative character of von Mises’ ap-

proach, for in applying this method to provide a definition of probability, von Mises

stipulates that a scientifically adequate definition of probability is only applicable in

those cases in which we “have a practically unlimited sequence of uniform observa-

tions” ([vM81], p. 11). It follows that single-case probabilities, assigned to events

that do not occur in a sequence of trials (or at least are not considered as part of a

sequence of events), fall outside of the scope of von Mises’ account.

Von Mises enforces this restriction of probability to those events that occur in

4The most detailed description of this method of concept formation as provided by von Mises
is the following:

[I]n the first place, the content of a concept is not derived from the meaning popularly
given to a word, and it is therefore independent of current usage. Instead, the concept
is first established and its boundaries are purposely circumscribed, and a word, as a
suitable kind of label, is affixed later. In the second place, the value of a concept is
not gauged by its correspondence with some usual group of notions, but only by its
usefulness for further scientific development, and so, indirectly, for everyday affairs
([vM81], p. 4).

This description leaves much to be desired. For instance, “usefulness for further scientific develop-
ment” is not a very clear criterion of value for a concept, nor is it clear that this notion of usefulness,
whatever it might amount to, should be the only criterion according to which one judges the value of
a concept. Further, one might worry that von Mises drives too large a wedge between the everyday
uses of a concept and the scientific uses of that concept: Why can’t there be a substantial overlap
between the two? I will set these issues aside, for to pursue them would take us too far from the
task at hand.
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potentially unlimited sequence of trials by defining probability in terms of what he

calls collectives. Roughly, a collective is (i) an infinite sequence X = x0x1x2 . . .

consisting of what von Mises refers to as attributes (where each of the attributes xi

belongs to a fixed collection A) that (ii) satisfies certain conditions of randomness

(which will be specified shortly). Thus, given an attribute a ∈ A, we can only

determine the probability of a insofar as it is a member of some collective.5

Now, given a collective X made up of the attributes from A (which I’ll write

as X ∈ Aω), we determine the probability of an attribute a in X by computing

the relative frequency of a in X, where the relative frequency of an attribute in a

collective is defined as follows. Let X = x0x1x2 . . . be a collective in which the

attributes a0, a1, . . . , an, . . . occur (where the collection of attributes can be either

finite or infinite); that is, let X be an infinite sequence of elements from the set

A = {a0, a1, . . . , an, . . . }. Then the relative frequency of the attribute aj in the

initial segment of X of length n is the value

#{i < n : xi = aj}
n

.

To compute the probability of the attribute aj in the collective X, we compute

the limit of the relative frequency of aj in the initial segments of X. That is, the

5It’s not altogether clear what von Mises takes an attribute to be: in some cases, he speaks of
attributes as observations or events, but in other cases, attributes seem to function as labels that
we affix to given events. The most reasonable approach is to consider events as attribute-instances;
strictly speaking, we don’t consider the probability of a given attribute, but rather the probability
that an event will instantiate that attribute. I am indebted to Antony Eagle for this point.
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probability of the attribute aj in the collective X is

pj = lim
n→∞

#{i < n : xi = aj}
n

, (8.1)

which we’ll refer to as the limiting relative frequency of aj in X. In this way, we get

a probability distribution on the collection A = {a0, a1, . . . , an, . . . }.

For von Mises, then, probability is limiting relative frequency. This much of von

Mises’ account was not novel, for as he notes, the frequency theory of probability had

already appeared in previous works, most notably in John Venn’s 1866 The Logic of

Chance [Ven66]. What is novel about von Mises’ frequentist account of probability

is the role that randomness plays in his account. Specifically, von Mises required that

collectives satisfy a condition of randomness, which is enforced by the second of his

two axioms of collectives. Let us thus turn to von Mises’ two axioms of collectives.

8.2.2 Von Mises’ Axioms of Collectives

As motivation for von Mises’ first axiom of collectives, note that there are some

infinite sequences of events consisting of attributes for which the limit in (1) above

does not exist.6 It thus follows that the probabilities of the attributes in those

sequences are not defined. For an infinite sequence to count as a collective, it must

6For example, let A = {0, 1} and let X be the sequence formed inductively as follows: At stage
1, let the first value of X be 0. If σ is the initial segment of X formed at stage k, then at stage
k + 1 there are two cases to consider, depending on whether k is odd or even. If k + 1 = 2n for
some n, then we add 2|σ| 1’s to the end of σ, and if k + 1 = 2n + 1 for some n, then we add 2|σ|
0’s to the end of σ. Thus, we have

X = 011

6︷ ︸︸ ︷
000000 111111111111111111︸ ︷︷ ︸

18

54︷ ︸︸ ︷
000000000000000000000000000000000000000000000000000000 . . .
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satisfy von Mises’ first axiom of collectives:

(VM1) If X = x0x1x2 . . . ∈ Aω is a collective, then for each aj ∈ A,

lim
n→∞

#{i < n : xi = aj}
n

exists.

According to von Mises, sequences satisfying (VM1) still may not be appropriate for

defining probabilities; such sequences must also satisfy a requirement of randomness.

That is, the “limiting values must remain the same in all partial sequences which may

be selected from the original one in an arbitrary way” ([vM81], p. 25).7 The reason

for this requirement of randomness is that it guarantees that certain calculations in

the probability calculus, namely those that involve the product rule for probabilities,

can be carried out. In his discussion on probability in his book Positivism, von Mises

explicitly makes this point, writing,

Then for infinitely many n, we have

#{i < n : xi = 0}
n

<
1

3

and for infinitely many n,
#{i < n : xi = 0}

n
>

2

3
,

and so

lim
n→∞

#{i < n : xi = 0}
n

does not exist (and similarly for the attribute 1).

7Von Mises’ use of the word ‘arbitrary’ here is misleading, since it gives the appearance that
he is requiring that the limiting values remain the same in subsequences selected from the original
sequence in any way whatsoever. But this can’t be what von Mises has in mind, for as will be
discussed shortly, this requirement would result in a highly defective definition of randomness.
Let us set aside this point for now, and fill out the rest of the details of von Mises’ condition of
randomness.
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In order to derive the multiplicative law, which expresses a well-known
empirical fact, in a sufficiently general form, one has to subject the col-
lective to another axiom besides the one that requires the existence of a
limiting value of the relative frequency. The second axiom demands that
the succesion [sic] of the various labels or trial results within a collective
is in a specific sense “random” ([Mis51], p. 170).

In order to illustrate this point, we need to consider how von Mises defines the

selection of partial sequences from a given sequence, and how this factors into his

definition of randomness.

As noted above, (VM2) guarantees that the partial sequences that we select from

a given sequence (which are more commonly referred to as subsequences) have the

same limiting values as those of the original sequence. These subsequences are to

be selected by what von Mises calls place selections. Formally, a place selection is a

function S : A<ω → {0, 1} (where A<ω is the collection of finite strings of members

from A) that takes as input a finite initial segment of a sequence X and outputs a 0

or 1, indicating whether or not we should include the next value of X in the selected

subsequence, which I’ll write as XS.8 For instance, we can define a place selection

that selects every odd-indexed place of the sequence X, or one that selects every

place that is preceded by two consecutive a’s for some fixed a ∈ A.

8Here are the details: For a given sequence X ∈ Aω, the partial sequence or subsequence of
X = x0x1x2 . . . selected by a place selection S is extracted as follows. First, we determine if
x0 is to be included in the subsequence by determining the value S(∅), where ∅ is the empty
string. If S(∅) = 0, we do not include x0 in our subsequence; if S(∅) = 1, we do. Similarly,
to determine if xn is to be included in our subsequence, where n > 0, having already made this
determination for x0, x1, . . . , xn−1, we calculate S(x0x1 . . . xn−1). If S(x0x1 . . . xn−1) = 0, then as
before, we do not select xn, but if S(x0x1 . . . xn−1) = 1, we do. In this way, we select a subsequence
XS = x`0x`1x`2 . . . , where x`n is the (n + 1)st value of X such that S(x0x1 . . . x`n−1) = 1. Note
that XS need not be an infinite sequence, as S might only select a finite number of values from X.
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For any place selection S and sequence X = x0x1x2 . . . ∈ Aω, once we apply S to

X to extract a subsequence XS = x`0x`1x`2 . . . , we can check to see if the limiting

relative frequencies of the attributes of XS are equal to those in X. Suppose that

X ∈ Aω satisfies (VM1), so that for each aj ∈ A,

lim
n→∞

#{i < n : xi = aj}
n

= pj.

Then the limiting relative frequencies of the selected subsequence XS = x`0x`1x`2 . . .

are the same as those of X if for each aj ∈ A,

lim
n→∞

#{i < n : x`i = aj}
n

= pj.

In this case, we will write relfreq(X) = relfreq(XS) and we will say that the limiting

relative frequencies of X are invariant under the place selection S.

There is one last step to take before we formulate the condition of randomness

referred to above: we need to isolate a specific collection of place selections, referred

to by von Mises as the admissible place selections. According to von Mises, a place

selection is admissible only if the choice to select an attribute in a sequence does

not depend on the value of the attribute, but only on the value of the previous

attributes in the sequence, or the index of the given attribute in the sequence, or

both, a condition I will call the admissibility condition.

Even though von Mises never provides an exact account of admissibility, he does

offer several hints as to what he has in mind. First, von Mises gives a number

of examples of admissible place selections: those places whose indices are (i) odd

183



numbers, (ii) square numbers, (iii) prime numbers, (iv) divisible by 3, (v) equal

to p2+2, for any prime number p, and (vi) are preceded by the attribute 0 three

indices earlier. Elsewhere, von Mises gives a more general characterization, stating

that subsequences selected by admissible place selections are “selected by means

of a pre-established arithmetical rule, independent of their attributes” ([vM81], p.

50). Unfortunately, von Mises doesn’t specify what is to count as a rule, a problem

his contemporaries seized upon in objecting to his definition, as discussed below in

Section 8.3.

For the sake of our discussion, let us assume that the collection of admissible

place selections is some well-defined collection of place selections.9 Then von Mises’

second axiom of collectives, the so-called condition of randomness, can be formulated

as follows:

(VM2) If X ∈ Aω is a collective, then for every admissible place selection
S,

relfreq(X) = relfreq(XS)

whenever XS is an infinite sequence.10

Von Mises also refers to (VM2) as the “principle of the impossibility of a gambling

system”, the idea being that in the games of chance, no one has found a gambling

system that will produce a subsequence on which a gambler using the system has a

9Here I make no assumption about whether these selections are computable or even arithmetical.
Later in Section 8.7, we will consider the collection of computable selection rules, but for now, I
merely want to assume that we’ve fixed some collection that does not contain all possible place
selections.

10This last qualification is necessary since, as noted in footnote 8, for some place selections S,
XS is finite.
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better chance at winning than not. In fact, von Mises appeals to this lack of gambling

systems as evidence that collectives exist.11 Any sequence satisfying (VM1) and

(VM2) is thus a collective; further, we can define the probability of the occurrence

of an attribute in a given collective to be the limiting relative frequency of the

occurrence of the attribute in that collective.

We’re now in a position to appreciate von Mises’ rationale for (VM2). The salient

point is that from the assumption of the product rule for probabilities, we can derive

the invariance of a collective under certain place selections. This is illustrated by the

following example, which is found in Michiel van Lambalgen’s dissertation, Random

Sequences.12 Let X ∈ 2ω be a sequence generated by the tosses of a fair coin. If

(i) the limiting relative frequency of tails (represented by 1) in X is 1
2

and

11For instance, von Mises writes,

‘How do we know that collectives satisfying this new and more rigid requirement really
exist?’ Here again we may point to experimental results, and these are numerous
enough. Everybody who has been to Monte Carlo, or who has read descriptions of a
gambling bank, knows how many ‘absolutely safe’ gambling systems, sometimes of an
enormously complicated character, have been invented and tried out by gamblers; and
new systems are still being suggested every day. The authors of such systems have
all, sooner or later, had the sad experience of finding out that no system is able to
improve their chances of winning in the long run, i.e., to affect the relative frequencies
with which different colours or numbers appear in a sequence selected from the total
sequence of the game. This experience forms the experimental basis of our definition
of probability ([vM81], p. 25).

12Van Lambalgen uses this example in an attempt to show that “anyone who interprets prob-
ability as relative frequency and accepts the Kolmogorov axioms [of the probability calculus] plus
the product rule for (physically) independent events, also has to believe in [collectives]” ([Lam87],
p. 36). Moreover, van Lambalgen takes himself to be showing with this example that collectives
are necessary to explain the applicability of probability, a concern that van Lambalgen claims is
shared by von Mises. While Kolmogorov was explicitly concerned with providing an explanation
the applicability of probability, it’s not clear that this was a problem that von Mises took himself
to be addressing. See [Por12] for a detailed discussion of this matter.
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(ii) if the product rule holds for two consecutive tosses,

then X is invariant under the following three place selections:

(S1) if n is odd, choose the nth value of the sequence;

(S2) if n is even, choose the nth value of the sequence; and

(S3) if n is even and the (n − 1)st value of the sequence is 1, choose the nth value

of the sequence.13

Summing up the significance of this result, van Lambalgen writes,

[I]nterpreting probability as limiting relative frequency and applying the
deductions of probability theory to a sequence X entails assuming that
X is a [collective], or at least that is has the [collective]-like properties
required for the particular deduction at hand (and one is tempted to
argue: since we could have chosen to perform a different calculation, e.g.
that of the probability of n times heads on n consecutive tosses, X must
in fact be a [collective], invariant under all admissible place selections
([Lam87], pp. 37).

There is nothing special about the three place selections specified above. If we require

the product rule to hold for the product of the probabilities of, say, five tosses of

the coin, then we will be able to conclude that our collective will be invariant under

even more place selections. Thus the motivation for (VM2) should be clear: if we

want to have collectives that satisfy the product rule for probabilities, there must be

some invariance under a rather large class of place selection rules, each of which is

definable by a simple arithmetical formula, like S1, S2, and S3 above.

13For the proof of this fact, see [Lam87], pp. 36-37.
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Let us take stock here. First, (VM1) guarantees that the limiting relative frequen-

cies of the attributes in a collective exist. As discussed above, this is a necessary

condition for a sequence to define a probability distribution on its attributes. Second,

(VM2) guarantees that the occurrence of attributes in a collective are sufficiently in-

dependent from one another, a property that is necessary for the probabilities defined

by the collective to satisfy the product rule for probabilities.

Despite certain attractive features of von Mises’ definition, it was considered

to be problematic by many of his contemporaries. Specifically, it was objected that

without a more precise statement of the admissibility condition, von Mises’ definition

would either be trivial or inconsistent. Further, it was also objected that von Mises’

account was problematic due to the undefinability of collectives. Let us now consider

these two objections in detail.14

8.3 Objections and Replies

Before I lay out the two objections raised against von Mises’ account and discuss

several responses to these objections, I should explain why these objections merit our

attention. First, in light of the first objection we consider below, von Mises eventu-

ally modified his account, and moreover, this specific modification had consequences

for von Mises’ approach to the resolutory ideal of completeness, which, as discussed

in the introduction, is attained by a theory of probability in which all problems of the

probability calculus are solvable. Second, these objections merit our attention be-

cause one notable response to them, provided by the American mathematician A.H.

14There is, in fact, a third objection to von Mises account based on a theorem proved by Jean
Ville. We will consider this theorem and associated objection in the next chapter.
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Copeland, was explicitly rejected by von Mises, who held that Copeland’s response

would result in a definition of probability that could not attain the resolutory ideal.

With these reasons in mind, we now turn to the first of the two main objections

to von Mises’ account.

8.3.1 The Admissibility Objection

The first objection considered here, which I call the admissibility objection, is

well-known among those familiar with von Mises’ definition. The key idea behind

the admissibility objection is this: any definition of randomness that requires the

invariance of limiting relative frequencies in subsequences selected by every place

selection is a defective one, in that it is either trivial or inconsistent. More specifically,

the resulting definition is defective because the only sequences random according

to this definition are those sequences that contain only one attribute that occurs

infinitely often, so that all other attributes occur only finitely often (I will henceforth

refer to collectives satisfying this property as trivial collectives).15 Moreover, if we

take as part of the theory of collectives the claim that non-trivial collectives exist,

the resulting theory would thus be inconsistent.16

This observation was made by a number of von Mises’ contemporaries, most

notably Erich Kamke, who included criticisms of von Mises’ axioms in his 1933 article

15Not even those sequences in which one attribute occurs with probability one and in which the
other attributes, while occurring infinitely often, occur with probability zero (as they occur less and
less frequently as we proceed along the sequence) would satisfy (VM2) if we were to count all place
selections as admissible.

16Most of von Mises’ objectors glossed over this point, immediately concluding that von Mises’
theory was inconsistent. Of course, the conclusion that the theory is trivial, although not quite as
damning, still implies that von Mises’ theory is, for all practical purposes, worthless.
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“Über neuere Begründungen der Wahrscheinlichkeitsrechnung” [Kam33] and also

in his monograph Einführung in die Wahrscheinlichkeitstheorie [Kam32]. Kamke’s

version of the argument is roughly as follows: Suppose we are given a collective X

made up of the attributes in A, and suppose further that there are attributes a, b ∈ A

that occur infinitely often in X, so that X is non-trivial. Then if pa and pb are the

limiting relative frequencies of a and b, respectively, then it follows that either pa 6= 1

or pb 6= 1 (or both). For the sake of argument, let us assume that pa 6= 1. If we let

n1, n2, . . . be a sequence of natural numbers such that X(n) = a if and only if n = ni

for some i ∈ ω (that is, the sequence (ni)i∈ω is the set of positions at which X has

the value a), then we can define a place selection S such that S only selects elements

for the subsequence at the indices (ni)i∈ω. Thus when given the collective X, S

extracts the subsequence XS = aaaaaaaaaa . . . , and thus (VM2) is not satisfied, as

the limiting relative frequency of a in the selected subsequence XS is 1 and not pa,

the limiting relative frequency of a in the original sequence X.

Kamke’s argument has been repeated numerous times over the years. Most no-

tably, during a session on the foundations of probability at a conference on probability

theory at the Université de Genève in 1937, Maurice Fréchet presented a variant of

Kamke’s argument (as well as a number of other criticisms of von Mises’ definition

of probability). According to Fréchet, either the collection of admissible place se-

lections contains all place selections, in which case von Mises definition is “without

concrete, precise significance” (“sans signification concrète precise”), or the collec-

tion of admissible place selections is a well-defined (“bien défini”) subcollection of

the collection of all place selections, but one that includes, for every collective X, at
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least one place selection that, like the above-defined place selection S, extracts from

X a sequence consisting of a single attribute ([Fré38], p. 29).

8.3.2 Von Mises’ Response to the Admissibility Objection

In response to Fréchet’s version of Kamke’s argument, von Mises argued that the

collection of admissible place selections does not include every place selection, and

more to the point, it doesn’t contain those problematic place selections that extract

from a given collective a sequence consisting of only one attribute.17 The reason

these problematic place selections are to be excluded, according to von Mises, is that

the indices chosen by these place selections are not independent of the attribute at

those indexed places. Thus, the place selection S constructed above in the discussion

of Kamke’s argument is to be excluded, since S chooses the nth place of the collective

X whenever the attribute in the nth place of X is a.

There is, however, a problem with this response that doesn’t appear to have

been noted elsewhere: while it is true that the place selection rule S, which can be

described by the rule “choose the nth value of X if and only if the nth value of X

is n”, is clearly in violation of the admissibility condition, this doesn’t eliminate the

possibility that there is some other rule that extracts the same subsequence from X

that S does, but which doesn’t violate the admissibility condition.

Although von Mises never explicitly rejects his initial response to the admissi-

bility objection in print, there is reason to think that he ultimately found it to be

17As noted by van Lambalgen, von Mises didn’t attend the Geneva conference, but he wrote a
response to the arguments presented at the conference that was included in the proceedings of the
conference. See ([vM38], pp. 61-62, 64-66) for more details.
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unsatisfactory, namely that he later modified his theory by replacing the condition

of admissibility with an alternative condition, which I will discuss in Section 8.4.

Let us now turn to the second main objection raised against von Mises’ account.

8.3.3 The Undefinability Objection

The second objection, which I call the undefinability objection, concerns the unde-

finability of individual collectives. Von Mises motivates this objection in the following

passage:

A sequence of zeros and ones which satisfies the principle of randomness
cannot be described by a formula or by a rule such as: ‘Each element
whose place number is divisible by 3 has the attribute 1; all the others
the attribute 0’; or ‘All elements with place numbers equal to squares of
prime numbers plus 2 have the attribute 1, all the others the attribute
0’; and so on. If a collective could be described by such a formula, then,
using the same formula for a place selection, we could select a sequence
consisting of 1’s (or 0’s) only. The relative frequency of the attribute 1
in this selected sequence would have the limiting value 1, i.e., a value
different from that of the same attribute in the initial complete sequence
([vM81], p. 88).

The problem von Mises raises here is this: if a given collective C is definable by some

formula or rule, then by means of that formula or rule, we can select a subsequence

C∗ from C so that the limiting relative frequencies of C∗ are not equal to those of

C, thus violating (VM2). Thus we have what one might call a definability tradeoff :

if we desire that at least one collective is definable by some formula or rule, we need

to ensure that the formula or rule in question cannot be used to define an admissible
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place selection. Formally, for a fixed collective X ∈ 2ω (i.e. {0, 1}ω)18, suppose there

are formulas Φ0,Φ1 in a fixed language L such that

{Y : (∀n)[Y (n) = 0⇐⇒ Φ0(n)] ∧ (∀n)[Y (n) = 1⇐⇒ Φ1(n)]} = {X}.

Then the worry is that one of the following place selections is counted as admissible:

S0 : Given a sequence Y , select the nth value of Y if and only if Φ0(n) holds.

S1 : Given a sequence Y , select the nth value of Y if and only if Φ1(n) holds.

The subsequence selected by S0 from the original collective X consists of only 0’s,

while the subsequence selected from X by S1 consists of only 1’s, and thus (VM2)

is violated (unless, of course, X is trivial). More generally, if Ψ is a formula in a

fixed language L such that {Y : Ψ(Y )} = {X}, the same problem will arise if the

sets {n : Φ0(n)} and {n : Φ1(n)} can be defined in terms of Ψ, for then the place

selections S0 and S1 will also be definable in terms of Ψ. Thus, if we require that at

least one collective be definable, we must take care to ensure that any definition we

provide cannot be used to define an admissible place selection in the above manner.

But why does it matter whether collectives are definable? Von Mises answers the

question as follows:

It is to this consideration, namely, to the impossibility of explicitly de-
scribing the succession of attributes in a collective by means of a formula
that critics of the randomness principle attach their arguments. Reduced
to its simplest form, the objection which we shall have to discuss first

18We restrict the number of attributes here to two, but the characterization we provide holds
for any finite collection of attributes.
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asserts that sequences which conform to the condition of randomness do
not exist. Here, ‘nonexistent’ is equivalent to ‘incapable of representation
by a formula or rule’ ([vM81], pp. 88-89).

Moreover, he adds,

The existence or nonexistence of limiting values of the frequencies of
numbers composing a sequence, say 1’s and 0’s, can be proved only if
this sequence conforms to a rule or formula. Since, however, in a se-
quence fulfilling the condition of randomness the succession of attributes
never conforms to a rule, it is meaningless to speak of limiting values in
sequences of this kind ([vM81], pp. 89).

Thus, the undefinability objection is this: without representing a collective X by

a formula or a rule, we cannot prove that the limiting relative frequencies of the

attributes in X exist. That is, we cannot prove that X is a collective to begin with.

To be clear, this objection is not that there are no collectives, but rather that we can

never prove that a given sequence is a collective. In particular, the objection goes,

if a collective X isn’t representable by means of some rule or formula, then there is

no way to calculate the limiting values of the relative frequencies of the attributes

in X. And without providing some way to calculate these probabilities, von Mises’

account cannot get off the ground.19

19I should emphasize the distinctness of the admissibility objection and the undefinability objec-
tion. Specifically, the admissibility objection is directed at the problem of the imprecise definition
of admissible place selections in (VM2), whereas the undefinability is directed at the problem of
determining whether a sequence satisfies (VM1) and (VM2) to begin with. However, one might hold
that collectives fail to be definable in virtue of the imprecise notion of admissibility, in which case
it would be reasonable to hold that the imprecision of admissibility in von Mises’ account results
in its being vulnerable to both objections.
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8.3.4 Von Mises’ Response to the Undefinability Objection

For von Mises, this worry about representing collectives for the purposes of cal-

culating probabilities, as well as general worries concerning the definability tradeoff,

aren’t really problematic at all. In von Mises’ view, “In a problem of probability

calculus, the data as well as the results are probabilities”, a view summarized by

the pithy phrase “the beginning and the end of each problem must be probabilities”

([vM81], p. 32). More specifically, von Mises held that “the exclusive purpose of [his]

theory is to determine, from the given probabilities in a number of initial collectives,

the probabilities in a new collective derived from the initial ones” ([vM81], p. 32).

To illustrate this point, von Mises takes the task of deriving probabilities from

initial probabilities to be analogous to the solving of problems in geometry, wherein,

starting with the data of certain known quantities (for instance, the lengths of the

sides of a right triangle), one determines the unknown quantities (say, the angles

between the sides of the triangle). Moreover, he adds, “The source from which these

values are known is irrelevant, in the same way in which the source of knowledge

of the geometrical data is irrelevant for the solution of the geometrical problem in

which these data are used” ([vM81], p. 32). Elaborating on this point, von Mises

writes,

A mathematician teased with the question, ‘Can you calculate the prob-
ability that I shall miss the next train?’, must decline to answer it in the
same way as he would decline to answer the question, ‘Can you calcu-
late the distance between these two mountain peaks?’—namely, by saying
that a distance can only be calculated if other appropriate distances and
angles are known, and that a probability can only be determined from
the knowledge of other probabilities on which it depends ([vM81], p. 32).
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Thus, on von Mises’ account of probability, which one might refer to as a trans-

formational account of probability, what is important is how initial collectives are

transformed into new collectives, not where the initial collectives come from.20 Thus,

on von Mises’ account, worries about the definability of collectives simply miss the

mark.21

8.3.5 Copeland’s Response to the Two Objections

The responses to the two objections as discussed above were not the only re-

sponses available to von Mises. For instance, von Mises could have offered another

response to these objections, based on the work of the American mathematician A.H.

Copeland. As von Mises observes,

One way to avoid all these difficulties would seem to consist in effectively

20Von Mises actually anticipates this objection in his 1919 Grundlagen. There he wrote the
following, as quoted in Probability, Statistics, and Truth,

[T]he existence of a collective cannot be proved by means of the actual analytical
construction of a collective in a way similar, for example, to the proof of existence
of continuous but nowhere differentiable functions, a proof which consists in actually
writing down such a function. In the case of the collective, we must be satisfied with
its abstract “logical” existence. The proof of this “existence” is that it is possible
to operate with the concept of a collective without contradictions arising ([vM81], p.
88).

Although von Mises later claims he would “perhaps express this thought in different words”, he
does assert that “the essential point remains”, by which he means that the formula defining a
collective cannot be used to define a place selection rule, which is precisely the definability tradeoff
discussed above. As for the notion of ‘abstract logical existence’, I don’t know what to make of it,
although the fact that von Mises would appeal to it does appear to put pressure on those who seem
to overemphasize constructivist tendencies in von Mises’ thought (most notably, van Lambalgen;
see e.g. [Lam87], pp. 9, 29).

21I should add that von Mises was also not concerned with proving that sequences we encounter
in nature really are collectives. For as discussed briefly in Subsection 8.2.2, experience with games
of chance shows that collectives exist.
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restricting the postulate of randomness. Instead of requiring that the
limiting value of the relative frequency remain unchanged for every place
selection, one may consider only a predetermined group of place selections
([vM81], p. 89).

In particular, Copeland suggested that the collection of all place selections be re-

stricted to the collection of place selections Sa,b that select every place whose index

is of the form an+b for some n ∈ ω, a collection I will write as S = {Sa,b}a,b∈ω. Fur-

ther, Copeland defined the collection of Bernoulli sequences to be the collection of

sequences that satisfy (VM1) and a modified version of (VM2), where the admissible

place selections are replaced with the place selections in S .

How would such a restriction allow for responses to the admissibility objection

and the undefinability objection? The answer is that Copeland’s restriction results

in a definition of collectives that is neither trivial nor inconsistent, as he (and von

Mises, independently) showed that an individual Bernoulli sequence can be explicitly

constructed. Thus, the admissibility objection is deflected, as the place selections

that feature in the counterexamples offered by Kamke and Fréchet, which lead to

violations of (VM2), are not included in S . Moreover, the undefinability objection

is also deflected, as at least one collective satisfying the condition of randomness

(relative to the selection rules in S ) is definable.

Despite these apparent virtues,22 von Mises did not accept Copeland’s restriction

to a predetermined collection of admissible place selections, nor any restriction to a

22One further virtue: Copeland also showed that Bernoulli sequences are free from aftereffect,
meaning that any subsequence selected by any rule of the following form has the same limiting values
as the original sequence: for k ∈ ω and i ∈ {0, 1}, given a sequence X, Sk,i selects the (n + k)th
value of X if and only if the nth value of X is i. This property was independently introduced by
Karl Popper, and played an important role in Reichenbach’s definition of randomness. See [Cop28],
[Rei32], or [Pop35] for details.
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predetermined collection, for reasons that will be offered in Section 8.6. However,

Abraham Wald offered a solution to both objections that von Mises did find to be

acceptable: Not only did Wald prove the consistency of the collectives, but he also

identified general conditions under which collectives can be explicitly constructed.

8.4 Wald’s Theorems and von Mises’ Modified Account

Wald’s response to the admissibility objection and the undefinability objection

can be found in his 1937 paper “Die Widerspruchsfreiheit des Kollektivbegriffes der

Warhrscheinlichkeitsrechnung” [Wal37], presented at Karl Menger’s colloquium in

Vienna in 1937.23 Before we consider the details of Wald’s response, let us fix some

notation and terminology that will be useful for the ensuing discussion. First, for

the sake of simplicity, let us restrict to a finite set of attributes A = {a0, a1, . . . , ak}.

Second, if A is a collection of attributes and S is a collection of place selections,

then C(S , A) is the collection of all sequences in Aω that are invariant under the

place selections in S . Third, in the case that A = 2 = {0, 1}, I will write C(S , A) as

C(S ). Lastly, given X ∈ C(S , A), when I refer to the probability distribution on A

induced by X, I simply mean the probability distribution on A given by the limiting

values of the relative frequencies of the attributes in X.

23Wald also presented a shorter version of his paper, entitled “Die Widerspruchsfreiheit des
Kollektivbegriffes”, at the Geneva conference on the foundations of probability in 1937, which was
later published with the rest of the conference proceedings in Actualités Scientifiques et Industrielles
[Wal38]. This is the version of the paper that we will draw from in the ensuing discussion.
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8.4.1 Wald’s Two Problems and their Solutions

In response to the admissibility objection and the undefinability objection, Wald

formulated the following two problems:

Problem 1. Given a collection of attributes A (finite or infinite) and a probability

distribution µ on A, what conditions must the collection S of place selections satisfy

so that a collective in C(S , A) exists and induces a probability distribution on A

that is identical to µ?24

Problem 2. What conditions must be satisfied by a countable collection S of place

selections and a probability distribution µ on A so that a collective in C(S , A) that

induces a probability distribution equal to µ can be constructively defined?

Observe that any solution to Problems 1 and 2 thereby yields a response to the

admissibility objection and the undefinability objection, respectively. And this is

precisely what Wald achieves.

8.4.1.1 Wald’s Solution to Problem 1

First, in response to Problem 1, Wald proves four theorems25, the first of which

is:
24Although Wald appears to be asking for necessary conditions in the statement of Problem 1, as

we’ll see, the answers he provides to Problem 1 come in the form of sufficient conditions. Nothing
of importance appears to hinge on this matter.

25The other three theorems of Wald’s are more general than this first one: Wald’s Theorem II
addresses the case that A is infinite (either countably or uncountably infinite), his Theorem III
concerns the case that A is a measure space of arbitrary cardinality in terms of which is defined
a σ-algebra of measurable sets, and his Theorem IV is a special case of Theorem III in which the
measure space in question is n-dimensional Euclidean space equipped with the algebra of Peano-
Jordan measurable sets. (Roughly, a set is Peano-Jordan measurable if it can be approximated
from the “inside” and the “outside” by finite unions of cubes. See, for instance, [Bur98], pp. 20-22
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Theorem (Wald’s Theorem I). If A is a finite collection of attributes, S is a set of

countably many place selections, and µ a probability distribution on A, then there

are continuum many collectives in C(S , A) that induce a probability distribution on

A that is identical to µ.26

Wald’s Theorem I guarantees the existence of a collective relative to this restricted

collection, and hence von Mises’ account is neither trivial nor inconsistent as long

as we are willing to restrict the collection of admissible place selections to some

countable collection. But is there any reason to think this restriction is problematic?

According to Wald, there is not; in practice, we only apply at most countably many

place selections to a given collective.27

Further, as von Mises held that a place selection should always be given in terms

of an arithmetical rule, this is consistent with Wald’s restriction to countable many

place selections. For according to Wald, “The concept of mathematical law can only

for details.) In each of these cases, the general outcome is the same: for each countable collection
of place selections, there is a collective that induces the probability distribution over the attribute
space in question.

26A similar result was also independently proved by the American probabilist J.L. Doob in 1936,
[Doo36], who proved that for every countable collection of place selections S , the set of collectives
with respect to S , C(S ) has Lebesgue measure one.

27As Wald notes, “[I]t is clear that in each specific task of probability at most countable number of
selection rules are actually used.” In the original German: “Denn es ist klar, dass in jeder konkreten
Aufgabe der Wahrscheinlichkeitsrechnung hchstens abzhlbar viele Auswahlvorschriften tatschlich
verwendet werden.” ([Wal37], p. 86) In addition, Wald claims that any weakening, presumably to
uncountably many place selections, would be “of little interest” (“kaum von Interesse wäre”) and
elsewhere that it would be “of little importance” (“kaum von Bedeutung wäre”). ([Wal37], p. 86)
Von Mises agrees with Wald’s conclusion, noting in a discussion of Wald’s theorems, “I know of no
problem in probability in which a sequence of attributes is subjected to more than an enumerably
infinite number of place selections, and I do not know whether this is even possible” ([vM81], p.
92).
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be defined meaningfully within a formal logic, and consequently there are evidently

only countably many mathematical laws.”28 ([Wal37], p. 86) As Wald argues, since

there are at most countably many mathematical laws, and since every admissible

place selection is given by a mathematical law, it follows that there are at most

countably many admissible place selection rules.29,30

8.4.1.2 Wald’s Solution to Problem 2

In response to Problem 2, Wald proves two additional theorems, one in the case

that the collection A of attributes is finite (Theorem V), and the other in the case

28In German: “Der Begriff des mathematischen Gesetzes kann ja nur innerhalb eine formal-
isierten Logik sinnvoll definiert werden und mithin gibt es offenbar nur abzählbar vielen mathema-
tische Gesetze.”

29As an example of a class of place selections given by mathematical laws definable in a formal
logic, Wald suggests that we can consider the collection of place selections definable in Principia
Mathematica.

30Wald’s invocation of logic is particularly noteworthy, for as Martin-Löf writes, “When dis-
cussing the restriction to denumerably many selection rules, Wald contributes a very decisive ar-
gument in which for the first time is felt the direct influence from mathematical logic” ([ML69b],
p. 29). But one might wonder here why Wald doesn’t consider also uncountable languages. The
reason appears to be that he could not establish the consistency of collectives defined in terms of
an uncountable collection of place selections. For after assimilating Wald’s insights into his own
theory, von Mises’ discusses this possibility, writing

I know of no problem in probability in which a sequence of attributes is subjected
to more than an enumerably infinite number of place selections, and I do not know
whether this is even possible. Rather, it might be in the spirt of modern logic to
maintain that the total number of all the place selections which can be indicated is
enumerable. Moreover, it has in no way been proved that if a problem should require
the application of a continuously infinite number of place selections this would lead
to a contradiction. This last question is still an open one ([vM81], p. 93, emphasis in
the original).

This question was later answered in the positive by Kamae in [Kam73]. It also follows from work
of van Lambalgen that every Martin-Löf random sequence is invariant under the place selections in
some uncountable collection of place selections. See, for instance, [vL90].
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that the collection is infinite (Theorem VI). As before, we restrict our attention to

the finite case.

In proving Theorem V, Wald isolates conditions under which collectives are “con-

structively definable”. For Wald, a sequence is constructively definable if there is a

procedure or method (“Verfahren”) such that, given the natural number i, computes

the ith value of the sequence in a finite number of steps.31 Additionally, Wald’s

solution to Problem 2 involves several other constructive defined objects:

◦ a constructively defined countable collection of place selections, where a count-

able collection of place selections S = {Si}i∈ω is constructively defined if there

is some procedure that, given any n and initial segment σ of a sequence X,

can calculate Sn(σ) in a finite number of steps (thereby telling us whether the

value that immediately follows this initial segment σ is to be selected or not);

and

◦ a constructively defined probability distribution, where a probability distribu-

tion µ on A = {a0, a1, . . . , ak} is constructively defined if there is a procedure

that given i computes the value µ(ai) in a finite number of steps.32

31We shouldn’t think that Wald has the formal notion of computability in mind here, but rather
the pre-formal notion that was in the air, so to speak, just prior to the notion’s formalization by
Church and Turing. For instance, Wald uses the same word for ‘procedure’ as Hilbert does in his
statement of his famous Tenth Problem. In Hilbert’s words: “Man soll ein Verfahren angeben, nach
welchem sich mittles einer endliche Anzahl von Operationen enscheiden lässt, ob die Gleichung in
ganzen rationalen Zahlen lösbar ist.” ([Hil01], p. 216) Compare this to Wald: “Die Merkmalfolge
{mi} (i = 1, 2, . . . , ad inf.) heisse konstruktiv definiert, falls ein Verfahren vorliegt, das fr jede
natrliche Zahl i den Merkmalwert mi in endlich vielen Schritten tatschlich zu berechnen gestattet”
([Wal37], p. 87).

32Actually, Wald defines what it means for a probability distribution to be constructively defined
when the collection of attributes A is infinite and then makes the further assumption that every
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Wald’s Theorem V can thus be stated as follows:

Theorem (Wald’s Theorem V). If A is a finite collection of attributes, S is a con-

structively defined collection of countably many place selections, and µ is a construc-

tively defined probability distribution on A, then there is a constructively defined

collective X ∈ C(S , A) that induces a probability distribution on A that is identical

to µ.

Note that this result doesn’t entirely address the undefinability objection, for al-

though Wald isolates conditions under which collectives are constructively definable,

it only follows that some collective is constructively definable. For if the concern

is that without a formula for defining a given collective X, then X cannot be used

in calculating probabilities, then Wald’s result would not, in general, address this

concern.

8.4.2 Von Mises’ Modified Account

Von Mises apparently found Wald’s response to the admissibility objection to be

noteworthy, given that he modified modified his theory, replacing the admissibility

condition with an alternative requirement of invariance inspired by Wald’s Theorem

I. In later presentations of von Mises’ account, such as those found in later editions

probability distribution on a finite collection of attributes is already constructively defined. As
Martin-Löf notes, this is a mistake, since there are probability distributions on a finite set of
attributes that assign to some of element of the set a probability that is not constructively definable
(and not even computable for that matter, where x ∈ R is computable if there is a computable
sequence of rational numbers {qi}i∈ω and a computable function f : ω → ω such that |x − qn| ≤
2−f(n) for every n ∈ ω): “Wald erroneously considered any probability distribution over a finite
sample space to be constructively defined, forgetting that we must require the probability masses
associated with the various outcomes to be computable real numbers” ([ML69b], p. 30).
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of Probability, Statistics, and Truth and in his textbook Mathematical Theory of

Probability and Statistics, von Mises drops the condition of admissibility and instead

opts for a relative approach: For a countable collection S of place selections, a

sequence X is a collective relative to S if the limiting relative frequencies of the

attributes in X exist and X is invariant under the place selections in S . Moreover,

this move is justified by Wald’s Theorem I: for each such countable collection S of

place selections, there is some X ∈ C(S , A).

While this move addresses the admissibility objection, it seems to raise another

problem: which countable collection S of place selections should we use to define

collectives? Von Mises’ response is subtle. According to the later version of von

Mises’ theory, as laid out in his textbook Mathematical Theory of Probability and

Statistics, for each problem in the probability calculus that we are attempting to

solve, there is some countable collection S of place selections such that we can solve

the given problem by means of collectives that are invariant under the place selections

in S . Thus, von Mises writes,

We obtain a concrete idea of the set [S ] of place selections which are
supposed not to change the frequency limits if we visualize [S ], for ex-
ample, as follows: in [S ] are contained all those place selections which
present themselves in a particular problem under consideration ([vM64],
p. 12).

But this raises two further questions. What role do place selections play in solving

problems of the probability calculus? And is there some collection S that allows us

to solve all problems of the probability calculus, or do we instead consider different

collections SP indexed by different problems P?33

33We might further ask: What does it mean for a place selection to “present itself”? And what
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As a first step in answering these two questions, we must look more closely at the

way in which one solves a problem of the probability calculus on von Mises’ account.

8.5 Von Mises’ Approach to Solving Problems in the Probability Calculus

As discussed in Subsection 8.3.4, on the transformational account of probability,

the beginning and end of each problem of the probability calculus are probabilities.

Thus, in solving a problem of the probability calculus, we need a method for trans-

forming the initial probabilities into final probabilities, which requires transforming

the initial collectives in terms of which the initial probabilities are given into the

derived collectives in terms of which the final probabilities are given. To do so, von

Mises makes use of four fundamental operations on collectives.

8.5.1 Four Fundamental Operations on Collectives

The four fundamental methods or operations identified by von Mises for deriving

new collectives from initial ones are (1) selection, (2) mixing, (3) partition, and (4)

combination. Let us consider each operation in turn.

8.5.1.1 Selection

The first operation, selection, is a familiar one: it is simply the application of an

admissible place selection to a collective to extract a new collective. Note, however,

that if selection is to transform collectives into further collectives, then we must

role does the problem in question play in this presentation?
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require a closure condition on the collection S , namely that for every S0, S1 ∈ S ,

there is some S2 ∈ S such that for every collective X, (XS0)S1 = XS2 .

8.5.1.2 Mixing

The operation of mixing involves defining new attributes as the collection of (or

disjunction of) certain attributes in the original sequence, resulting in a new collective

composed of the new attributes. More precisely, given a collective X ∈ Aω, where

A = {a0, . . . , an}, we define Â to be a partition34 of A, so that Â = {B0, B1, . . . , Bk},

where (i) for each ai ∈ A there is a unique j ≤ k such that ai ∈ Bj and (ii)⋃
j≤k Bj = A. Then we apply the operation of mixing toX by replacing each ai by the

set Bj to which it belongs, thus transforming X ∈ Aω into a collective X̂ ∈ (Â)ω.35

As a result of this operation, the distribution of the new sequence is determined by

adding the probabilities of the original attributes, so that the probability of Bj in

the sequence X̂ is just the sum of the probabilities of the attributes ai ∈ Bj in X,

thus establishing the addition rule of the probability calculus.36

34Although we define the operation of mixing by forming a partition of the set A of attributes,
this operation should not be confused with the operation of partition.

35More precisely, we replace each ai by a label ‘Bj ’, which corresponds to the set Bj that contains
ai. Henceforth, I will conflate Bj and ‘Bj ’ when I discuss the operation of mixing, but the reader
should bear this point in mind.

36According to the addition rule, the probability of the finite union of a collection of mutually
exclusive events is the sum of the probabilities of those events.
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8.5.1.3 Partition

The operation of partition is carried out whenever we simply delete from a col-

lective X every occurrence of certain attributes. Formally, we first partition the

collection of attributes A into two disjoint subsets A0 and A1. Next, given a collec-

tive X, we define the collective X∗ ∈ (A1)ω derived by partition to be the collective

derived from X by eliminating all occurrences of those attributes in A0. Von Mises

is careful to point out that this operation is not the same as selection; whenever

we apply selection to a collective, we select places from that collective in accordance

with an admissible place selection, irrespective of the attributes in those places, while

whenever we apply partition to a collective, the new collective is derived by selecting

all elements belonging to A1 and none of those belonging to A0, an operation that

is not, in general, given in terms of an admissible place selection. Additionally, used

in tandem with mixing, partition can be used to define conditional probability.37

8.5.1.4 Combination

Combination is an operation that, unlike the other three operations, derives a

new collective from two initial collectives. The idea is that given two collectives

X and Y , we use one collective, say X, called the sampling collective, to extract a

subsequence from the other collective Y , which is called the sampled collective. To do

37Let X be a collective composed of attributes from A = A0∪A1 representing a certain collection
of events, where A0 and A1 form a partition of A, and let a ∈ A1 be some fixed attribute. The
conditional probability of the occurrence of the event represented by a, given that we know some
event represented by an attribute in A1 has occurred, is the limiting value of the relative frequency
of a in the collective X∗ ∈ (A1)ω formed by partition divided by the limiting value of the relative

frequency of the attribute A1 in the collective X̂ ∈ {A0, A1}ω formed by mixing.
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so, we place X and Y into a one-to-one correspondence and then choose an attribute

a that appears in X infinitely often to serve as the basis for selecting values in the

sampled collective Y . At those positions where a occurs in the sampling collective X,

we select the elements from the sampled collective Y , resulting in a new collective,

which I’ll denote YX,a.

Let us note two consequences of the operation of combination. First, by means

of the operation of combination, von Mises defines what it means for two collectives

to be independent of one another: Given collectives X and Y , Y is independent of

X if no matter how we use X to sample a subsequence from Y , the limiting values

of the relative frequencies of the derived sequence are the same as those in Y . That

is, Y is independent of X if for all a ∈ A that appears in X infinitely often, we

have relfreq(YX,a) = relfreq(Y ). This relation of independence is symmetric, a fact

that follows from the second consequence of the operation, namely that combination

allows von Mises to derive the product rule of the probability calculus, according to

which the probability of the conjunction of two independent events is the product of

the probabilities of those events.

In order to explain how these operations are used to solve problems in the prob-

ability calculus, we need to look more carefully at how problems and their solutions

can be formulated on von Mises’ account.

8.5.2 Problems and Solutions

Although von Mises’ does not give a precise definition of a “problem of the prob-

ability calculus”, he provides enough clues for us to begin to sharpen the notion.

207



First, given that the beginning and end of a problem of the probability calculus are

probabilities, and given that probabilities are always given in terms of collectives, it

appears that a problem of the probability calculus is first given by an initial collective

or a collection of initial collectives. Moreover, as von Mises says that the amount

of invariance for the collectives is determined by the problem in question, and that

the invariance is never determined by more than countably many place selections,

we thus have: A problem P of the probability calculus is first given by

(i) a collection C of initial collectives, and

(ii) a collection of place selections S such that every collective in C is invariant

under the place selections in S .

But this can’t be all that constitutes a problem of the probability calculus for von

Mises; there must be some further demand, such as ‘Find the probability that event

E occurs under the following conditions’. Thus we include a further component, the

demand of the problem P , which we will denote D. Put simply, a demand D is simply

a request for the probability of a certain event E or collection of events {E1, E2, . . . }.

To sum up, we will consider a problem P to be given by a triple (C,S ,D), where

C is some collection of initial collectives, S is a collection of place selections such

that the collectives in C are invariant under the every S ∈ S , and D is a demand

for the probability of a certain event E or collection of events {E1, E2, . . . } to be

determined.38

38This picture can be made even more precise, for instance, by considering the conditions under
which the events in question arise, or how these events are to be related to the attributes in the
initial collectives. Still, for our purposes, the account we present here should suffice.
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Now the events Ei referenced in the demand D may belong to a collection of at-

tributes other than those which compose the initial collectives. To solve the problem

P , then, one must determine how to arrive at the correct derived or final collective,

one that contains each Ei as an attribute, so that one can read off the probability

of Ei in the derived collective, thus satisfying the demand of P . Hence, a solution

to P is given by a sequence O1, O2, O3, . . . of some combination of the four funda-

mental operations discussed in Subsection 8.5.1 (selection, mixing, partition, and

combination) such that by successively applying O1, O2, O3, . . . to the initial collec-

tives in C, we will arrive at the correct derived collectives, which will contain the

probability of the events Ei (in this case, let us say that we have met the demand

D). Moreover, any use of selection must be from the collection S , so that we have

Oi ∈ S ∪ {mixing, partition, combination} for each i.39

8.6 An Ideal of Completeness

We’ve now addressed the question as to the role that place selections play in

solving problems of the probability calculus. However, we have yet to determine

whether there is some collection S that allows us to solve all problems of the prob-

ability calculus.

39There is a problem with this analysis, however. If we require that the initial collectives in C
are invariant under the selections in S , in applying combination to two initial collectives, it is not
apparent that the resulting collective will be invariant under the selections in S . But the worry is
that we may need to apply a selection to this combined collective, but we have no guarantee that the
combined collective is invariant under the selection we need to apply. To circumvent this problem,
it appears that we must require that the collection S be such that any collectives derived from the
initial collectives are invariant under the selections in S (and not just the initial collectives).
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8.6.1 Formulating the Resolutory Ideal

As we just discussed, in order to solve certain problems of the probability calculus,

we need to apply a sequence of operations to an initial collective. However, unless

the initial collective is sufficiently invariant under place selections, we might apply

the operation of selection at some stage in our solution and produce a non-collective.

In other words, unless our initial collectives are sufficiently random, there will be

problems of the probability calculus that we are unable to solve. This, then, is the

resolutory role of randomness : collectives must be sufficiently random in order to

solve certain problems of the probability calculus.40

Given that von Mises judges the merits of his account based on its usefulness for

scientific purposes, if there are problems of the probability calculus that it cannot

solve, this would prove to be a defect of the theory. But according to von Mises, his

theory is not defective in this respect. He writes, “The knowledge of the effect of

the four fundamental operations on the distribution enables us, in principle, to solve

all problems of the calculus of probabilities” ([vM81], p. 65, emphasis added).41 In

40In particular, in the course of solving problems, we will often begin with a single collective
C, use selection to extract certain subsequences from C, and then use combination to combine
these subsequences into a derived sequence the attributes of which are tuples of attributes from
C. However, as we discussed in Subsection 8.2.2, the derived sequence produced by the operation
of combination will not be a collective unless the original collective C was invariant under the
selections described above. In this, selection and combination work in tandem to produce new
collectives from initial collectives.

41It is peculiar for von Mises to claim that the “knowledge of the effect of the four fundamental
operations” allows for the solution of all problems of the probability calculus. Why appeal to knowl-
edge of the effect of the operations, rather that just stating that by means of the four operations, all
such problems are solvable? One suggestion is this: If we start with what von Mises refers to as a
known collective (itself not an unproblematic notion), then if we have knowledge of the effect of the
four operations, when we apply any of the four operations, the derived collective will also be known
by us. That is, with knowledge of the fundamental operations, we can transform known collectives
into known collectives. Of course, to make sense of this suggestion, we need to determine what it
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other words, von Mises took his account to be complete, insofar as it allowed for the

solution of all problems of the probability calculus, an ideal of completeness I call

the resolutory ideal of completeness.

But why did von Mises think that his theory could attain this resolutory ideal?

The beginning of an answer is found at the beginning of his third lecture in Proba-

bility, Statistics, and Truth, in which von Mises writes,

If it were my intention to give a complete course on the theory of probabil-
ity, I should now demonstrate how new collectives are derived from given
ones by more and more complicated combinations of the four fundamen-
tal operations, and, on the other hand, how all problems usually treated
in probability calculus can be reduced to combinations of this kind. It
would, however, be impossible to do this without using mathematical
methods out of place in this book ([vM81], p. 66).

Von Mises then directs “[t]hose who are interested in this side of the theory” to

several sources, including his lecture notes on probability and statistics [vM46]. Upon

searching through these notes (and his later textbook based on these notes), one

doesn’t find some general theorem showing that his four operations allow him to

solve all problems of the probability calculus. Instead, one finds von Mises working

out all of the results typically found in a standard text on probability and statistics,

except that all of these results are obtained by applying different combinations of

his four fundamental operations to certain initial collectives (including those defined

over uncountable sets of attributes). Thus, for von Mises, one doesn’t show that the

resolutory ideal can be attained by proving general meta-theoretic results about the

means to know a collective. Is it just to know the limiting relative frequencies of the attributes that
make up the sequence? Or does the knowledge of a collective also involve knowledge of those place
selections under which the collective is invariant? No easy answer is forthcoming.
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fundamental operations; rather, one just does the hard work of deriving all of the

results in standard textbooks on probability and statistics by means of collectives

and the four fundamental operations.42,43

42Von Mises concedes that this can be rather difficult in some cases, due to “complications arising
from the accumulation of a great number of elementary operations” ([vM81], p. 65).

43There are, however, a number of general questions that might reasonably be asked of von
Mises’ fundamental operations and their relation to the resolutory ideal that are left unanswered.
For instance, von Mises doesn’t address why he chose these operations as fundamental, nor does he
discuss whether these operations are independent of one another, or whether there are some other
operations, or even a proper subset of his four operations, that would allow his theory to attain
the resolutory ideal. Nonetheless, one can venture an educated guess as to how von Mises would
address these points. First, what is distinctive about the four fundamental operations is that they
preserve the condition of randomness. In the beginning of his lecture notes, von Mises describes a
procedure for deriving a new sequence from a collective, but one that “destroys the randomness” of
the original sequence: Given a binary sequence X ∈ 2ω generated by the tosses of a fair coin (which
von Mises takes to be a given collective), one obtains a sequence Y ∈ 3ω by adding the first and
second values of X, then the second and third values, the third and fourth values, and so on. As a
result of this operation, the sequence Y has the property that no 2 occurring in Y is ever followed
by a 0, since a 2 in Y is obtained by adding two consecutive 1s in X, which means that the next
value in Y would have to be at least 1. For similar reasons, the consecutive values 010 never appears
in Y . Note that Y is thus not a collective for if we select every value that follows a 2, we would
obtain a sequence that contains no 0s. It is this preservation of randomness, von Mises claims,
that allows for his theory to solve “most of the known problems of probability calculus” ([vM64],
p. 15). Concerning the latter two points, on the independence of his operations and whether
some proper subset of them or some other set of operations would suffice to attain the resolutory
ideal, it seems that what was most important for von Mises was deriving the standard rules of
the probability calculus (the addition rule, the division rule used in the definition of conditional
probability, and the product rule). But it also seems that von Mises wanted to derive these rules
from operations that could be given a reasonable physical interpretation, given that he thinks of
collectives as sequences of observations. We take the question as to whether there are some other
operations that satisfy these two conditions (derivability of the rules of the probability calculus
and a reasonable physical interpretation) to be an open question, but insofar as the fundamental
operations satisfy these conditions, it seems they would be appropriate for attempting to achieve
out the resolutory ideal, at least from von Mises’ perspective.
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8.6.2 Attaining the Resolutory Ideal

There is an additional feature of von Mises’ account of the resolutory ideal:

according to von Mises, the resolutory ideal cannot be attained if we restrict the

collection of place selections to some fixed, predetermined countable collection. In

particular, von Mises rejected Copeland’s suggestion that the collection of collectives

be identified with the Bernoulli sequences (those sequences that are collectives with

respect to those place selections that select at every index of the form an+b for fixed

a, b ∈ ω), arguing that on such a restricted approach, the resolutory ideal could not

be attained. As von Mises observed, a number of problems in the probability calcu-

lus can be solved using Bernoulli sequences, but not all of them: “[T]here is [. . . ] no

doubt that a number of other meaningful questions would now remain unanswered”

([vM81], p. 90).44,45 Thus, it is the resolutory ideal of completeness that trumps any

benefits provided by restricting the definition of probability to Bernoulli sequences.

44Von Mises offers an example of a problem of the probability calculus that cannot be solved
using Bernoulli sequences, a modification of a famous problem of Chevalier de Méré, first solved by
Fermat. The problem of Chevalier de Méré was this: Suppose we cast a die four times in a row.
Which is more probable, for a 6 to occur at least once, or for no 6 to occur at all? By means of
Bernoulli sequences (where each attribute is a four-tuple representing the results of tossing the die
four times) and the four fundamental operations, one can solve this problem of de Méré. However,
as von Mises notes, “What happens, for instance, if a player decides, at the beginning, that he will
consider only the first, second, third, fifth, seventh, eleventh,. . . casts of the die, that is to say, only
those whose order number is a prime number? Will this change his chances of winning or not?”
([vM81], p. 90) That is, if given a sequence of four-tuples of tosses of the die, by means of Bernoulli
sequences, can we still solve the problem of de Méré in the subsequence selected from the positions
whose indices are prime numbers? As von Mises notes, we cannot.

45According to Martin-Löf,

[V]on Mises forcibly urged that sequences like the admissible numbers [of Copeland]
cannot be regarded as satisfactory idealizations of sequences obtained by actual coin
tossing. Since an admissible number may be defined by a mathematical law, we
could, when playing with such a sequence, ensure ourselves an unbroken series of wins
([ML69b], p. 24).
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But von Mises makes a much more radical claim:

If, instead of restricting ourselves to Bernoulli sequences, we consider
some differently defined class of sequences, we do not improve the state
of affairs. In every case it will be possible to indicate place selections
which will fall outside the framework of the class of sequences which we
have selected. It is not possible to build a theory of probability on the as-
sumption that the limiting values of the relative frequencies should remain
unchanged only for a certain group of place selections, predetermined once
and for all ([vM81], p. 91, emphasis added).46

In other words, if the collection of place selection rules is restricted to some fixed,

countable collection, then the resulting theory of probability will not attain the

resolutory ideal of completeness; there will be at least one problem of the probability

calculus that will not be solvable by this theory.

Let us try to better understand this view by formulating this suggestion in more

precise terms. One reasonable suggestion, given in term of the analysis of von Mises’

approach to problems and solutions provided in Subection 8.5.2, is the following:

For every countable collection of place selections S , there will be a problem P =

(C,S ∗,D) such that

(i) there is some sequence O∗1, O
∗
2, O

∗
3, . . . of fundamental operations such that (a)

But this does not appear to be right. Based on what we’ve seen, von Mises wanted a definition of
randomness that would ensure the solution of problems in the probability calculus, not one that
would provide “satisfactory idealizations of sequences obtained by actual coin tossing”. Moreover,
such idealizations would not be applicable in those contexts in which the collectives under consid-
eration have more than two attributes, so this doesn’t seem to be a line of argument that von Mises
would pursue.

46This passage gives us strong evidence against one common interpretation of von Mises’ defini-
tion, that he wanted an absolute definition of randomness. For instance, Martin-Löf writes, “[Von
Mises] wanted to define random sequences in an absolute sense, sequences that were to possess all
conceivable properties of stochasticity.” In the next chapter, however, we will see that this is an
appropriate of description of Jean Ville’s approach to randomness.

214



O∗i ∈ S ∗ ∪ {mixing, partition, combination}, and (b) successively applying

the operations O∗i to any initial collective in C will produce a derived collective

which will allows us to meet the demand D; and

(ii) for every sequence O1, O2, O3, . . . of fundamental operations such that Oi ∈

S ∪{mixing, partition, combination}, by successively applying the operations

Oi to any initial collective in C, the resulting sequence will either (a) fail to be a

collective, (b) yield one or more incorrect values of the probabilities referenced

in the demand D, or (c) will not contain one or more of the attributes referenced

in the demand D.

These two conditions clearly imply that S ∗ 6= S , and thus we see that while we

can solve P with sequences that are invariant with respect to the place selections in

S ∗, with sequences that are invariant with respect to the place selections in S , we

cannot.

Given these rather intricate conditions, one is left to wonder what could possibly

justify von Mises’ belief that for any problem P , these two conditions must hold. One

might attempt to provide the justification on formal grounds, but the meta-theoretic

apparatus that would have to be put in place to even pose the problem in precise

enough terms would be extremely powerful: one would need at least third-order

arithmetic, given that the fundamental operations map collectives to collectives,

which are themselves second-order objects.
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8.7 Church on the Resolutory Ideal

Although the resolutory role of randomness and the related resolutory ideal of

completeness play a central role in von Mises account, it was seemingly ignored by

all of von Mises’ contemporaries, the lone exception being Alonzo Church. In his

short paper “On the Concept of a Random Sequence”, published in 1940, Church

offers a restricted version of von Mises’ second axiom (VM2), the principle of the

impossibility of a gambling system. Speaking of von Mises’ formulation of (VM2),

Church writes, “Grave question is raised whether this requirement, made in vague

terms by von Mises, can be satisfactorily represented in an exact definition at all”

([Chu40], p. 132).47 It is this exact definition that Church attempts to provide.

Given von Mises’ view that the resolutory ideal cannot be attained when we

restrict the collection of place selections to some predetermined collection, one might

conclude that in attempting to provide an “exact definition” of the condition of

randomness, Church is either explicitly rejecting this ideal or at least is unaware of

it. Surprisingly, on the contrary, Church clearly holds that the resolutory ideal is

one that the resulting definition of probability should strive to attain, a view he sets

forth in his discussion of the restricted collectives of Copeland and Reichenbach.

First, Church acknowledges the attempts of Copeland and others to provide an

exact formulation of the criterion of randomness, writing,

47When Church refers to an exact definition, it’s not immediately clear what he has in mind, as
there are at least two ways to make von Mises’ definition exact. First, one could fix, once and for
all, one precise class of place selection rules and define collectives solely in terms of this class. Or,
one could show how each problem in the probability calculus corresponds to a precise collection of
place selections, each of which guarantees enough independence in collectives that can be used to
solve that problem. Whereas the second approach is more faithful to von Mises’ stated intentions,
it is the first approach that Church takes.
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This difficulty [that of providing an exact definition of randomness] may
be avoided by abandoning the attempt to define a random sequence and
substituting some less restricted class of sequences, such as the admissible
numbers of Copeland or the equivalent normal sequences of Reichenbach
([Chu40], p. 132).48

But just as von Mises rejected the definitions of Copeland, Reichenbach, and others

on the basis of the resolutory ideal of completeness, so too does Church:

The admissible numbers [of Copeland] have properties which are sufficient
to form a basis for a large part of the theory of probability, and they have
the important advantage that their existence, for any assigned probability
p, can be proved. Their use for this purpose, however, is open to certain
objections from the point of view of completeness of the theory, as has
been forcibly urged by von Mises, and it is therefore desirable to consider
further the question of finding a satisfactory form for the definition of a
random sequence ([Chu40], p. 133, emphasis added).

Note here that Church also has the worry about the existence of collectives in mind,

as he cites as an advantage of Copeland’s definition the fact that one can prove

the existence of admissible numbers, i.e., collectives with respect to the collection of

Bernoulli place selections. Thus, in agreement with von Mises, Church holds that

concerns about the resolutory ideal of completeness trump the virtues of Copeland’s

definition.

This agreement notwithstanding, Church differs with von Mises as to one as-

pect of the resolutory ideal of completeness, namely, they disagree about the scope

48One might be puzzled that whereas von Mises characterizes the work of Copeland and Re-
ichenbach as providing a restricted notion of randomness, Church considers their notion to be less
restricted. But there is no disagreement here, since when von Mises refers to restricted randomness,
he is considering the restriction of the collection of place selections, resulting in a larger collection
of collectives, while Church takes this larger collection of sequences to be less restricted, since it
would have been smaller had we included more place selections. In short, the more we restrict the
condition of randomness, the larger and less restricted the resulting class of collectives will be.
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of the problems that must be solvable in our theory of probability in order for it

to be considered complete. As this difference in approach to the resolutory ideal

follows naturally from the difference between von Mises’ definition of randomness

and Church’s restricted version of this definition, it will be instructive to consider

Church’s definition.

8.7.1 Church’s Restricted Definition of Randomness

In order to provide an exact definition of randomness along the lines suggested

by von Mises’ definition, Church proposes that we define collectives in terms of the

collection of place selections that are effectively calculable. He writes,

It may be held that the representation of a Spielsystem [i.e, a gambling
system] by an arbitrary function φ is too broad. To a player who would
beat the wheel at roulette a system is unusable which corresponds to a
mathematical function known to exist but not given by explicit definition;
and even the explicit definition is of no use unless it provides a means
of calculating the particular values of the function. As a less frivolous
example, the scientist concerned with making predictions or probable
predictions of some phenomenon must employ an effectively calculable
function: if the law of the phenomenon is not approximable by such a
function, prediction is impossible. Thus a Spielsystem should be rep-
resented mathematically, not as a function, or even as a definition of a
function, but as an effective algorithm for the calculation of the values of
a function ([Chu40], p. 133).

Church’s point is that any gambling system or method of prediction that is not effec-

tively calculable, or at least is not effectively approximable, cannot be implemented

and thus is, for all practical purposes, useless.49 Consequently, on Church’s ap-

49Church elsewhere reiterates this point, writing, “[A] betting system must be based on an
effectively calculable method of selection, otherwise it is no betting system at all, in the sense that
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proach, the collection of place selection rules is restricted to those that are effectively

calculable.

Having provided a justification for restricting to the effectively calculable place

selections, Church appeals to his formal definition of effective calculability of λ-

definability as adequate “to represent the empirical notion of an effective calculation”,

citing as support Turing’s result of the equivalence of λ-definability and general

recursiveness ([Chu40], p. 134). Thus, significantly, one of the earliest applications of

Church’s Thesis comes in the service of providing a definition of randomness, a notion

we shall henceforth refer to as Church randomness.50 Having established that the

collection of effectively calculable place selections is a formally definable collection,

Church then appeals to Wald’s Theorem I to prove the existence of Church random

sequences: Since there are countably many computable place selections, it follows

from Wald’s Theorem I that there are continuum many random sequences.51

After concluding that Church random sequences exist, Church compares his no-

tion of randomness with Copeland’s notion of admissible numbers. While every

Church random sequence is an admissible number, not every admissible number is

a Church random sequence. The reason for this is that (i) there is some admissible

number A = a1a2a3 . . . such that the function f(n) = an is a computable function,

no bettor could actually employ and carry out such a system” ([Chu66a], pp. 1-2).

50Today, it is common to refer to Church’s definition as Church stochasticity rather than Church
randomness, as Church’s definition is generally held today to be an inadequate definition of ran-
domness. The reasons for this will be made clear in the next chapter.

51Church also concludes via a theorem of Doob’s, discussed in footnote 25, that the collection of
binary sequences with limiting relative frequencies equal to 1/2 for each event 0 and 1 forms a set
of measure one in 2ω.
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but (ii) no Church random sequence can have this property, since given such a se-

quence A and a corresponding function f such that f(n) = an for every n, the set

S = {n : f(n) = 0} is a computable set, and thus the place selection that selects the

nth bit of a sequence if and only if n ∈ S is a computable place selection that selects

a sequence of all 0s from A. Church thus took his definition to be an improvement

over Copeland’s, which von Mises rejected on the grounds that it could not attain

the resolutory ideal.

8.7.2 Church’s Restricted Version of the Resolutory Ideal

But isn’t Church’s definition vulnerable to the same problem? Interestingly,

Church didn’t think so. First, he is clear that invariance under the computable place

selections is necessary to attain the resolutory ideal, a point Church makes explicitly

when he responds to a potential objection to his restricted definition. He writes,

Use of the above proposed definition of a random sequence as fundamental
to the theory of probability is consequently open to the objection that by
its means such otherwise apparently combinatorial matters as elementary
questions of probability in connection with the tossing of a coin are made
to depend on the powerful (and dubious) non-constructive methods of
analysis. ([Chu40], p. 135).

In response to this objection, Church writes,

It is clear, however, that any definition of a random sequence more strin-
gent than this one would have the same disadvantage, and on the other
hand that no definition in any respect less stringent could be regarded
as even approximately representing von Mises’s intention or as being free
from such objections as those brought by him against the use of admis-
sible numbers or normal sequences ([Chu40], p. 135).
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Thus we have a sort of bottleneck here: On the one hand, we have another definability

tradeoff: any definition that is “more stringent”, i.e. one that is defined in terms of

place selections that form a proper superset of the collection of computable place

selections, will be vulnerable to the same non-constructivity objection given above.

On the other hand, any definition of randomness that is “less stringent”, i.e. one that

is defined in terms of place selections that are a proper subset of the collection of

computable selections, would result in a definition of probability that is vulnerable to

the objections von Mises raised against the definitions of Copeland and Reichenbach,

that there are some problems of the probability calculus not solvable by means of

their restricted definitions. Hence, according to Church, any definition of probability

given in terms of place selections strictly weaker than the computable place selections

would not be able to attain the resolutory ideal of completeness.

Did Church think his definition also provided a sufficient amount of invariance

to attain the resolutory ideal? In his article, he doesn’t say. In correspondence with

von Mises’ wife, Hilda Geiringer,52 Church claims something very much along these

lines. In his first letter to Geiringer, Church makes a claim that has been made

52As far as I can tell, the brief correspondence between Geiringer and Church, which took place
in 1966, has not been discussed in the literature on algorithmic randomness. I am grateful to the
Department of Rare Books and Special Collections at the Princeton University Library for helping
me to obtain copies of these letters from the Alonzo Church papers. This correspondence is also
noteworthy because von Mises never explicitly acknowledged Church’s contribution: In a review of
von Mises’ textbook, Mathematical Theory of Probability and Statistics, D.V. Lindley writes,

It appears to your reviewer, though the logical ideas here are outside of his special
field of knowledge, that Church’s idea avoids many, if not all, of the difficulties [that
beset von Mises’ definition], and it is surprising that von Mises makes no mention of
it. (There is no reference to Church in the book: I am indebted to G.A. Barnard for
drawing it to my attention. ([Lin66], p. 749)
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several times in the algorithmic randomness literature, that von Mises would have

restricted collectives to those invariant under computable place selections if only the

definition were available to him:

[I]t seems to me very plausible to say (though of course no proof of such
a proposition can be offered) that the definition of “collective” which
results from the approach of this paper is the one which von Mises in
some sense actually intended when he wrote in 1931, but that it was
impossible for him to make the definition in this way because at that
date the precise mathematical definition of effective calculability did not
yet exist ([Chu66b], p. 1)

In response to Church’s letter, Geiringer asks,

Could one say that your criterion while clearer and sharper than Wald’s
L-criterion [according to which we restrict to place selections definable
in some logic] is more restrictive (I mean that selections appearing in
L would not appear in your scheme). In my opinion, it would be of
great interest to possess a clear and sharp criterion which is sufficiently
comprehensive ([Gei66], p. 2).

From Church’s answer to Geiringer’s question, we see that he held that the resolutory

ideal could be attained with a restricted definition, as long as we were willing to

restrict the scope of the problems solvable by the resulting definition. He writes,

[. . . ] I agree that a good reconstitution of the notion of collective must
make use of a class of selections, not necessarily wide enough to cover all
selection that anybody has ever made or claimed to make in a probability
problem or probability proof, but wide enough so that a comprehensive
probability theory can be developed on the basis of the notion of collec-
tive that results from the class of selections in question with significant
gaps neither in the internal logical structure of the theory nor in its ap-
plications ([Chu66a], p. 1, emphasis added).
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Here we see Church implicitly acknowledge that there may be some problems of the

probability calculus that cannot be solved with his restricted definition, but nonethe-

less, the resulting theory of probability would still be “comprehensive”. Interestingly,

the reason he thought this is the same reason von Mises offered for why his defini-

tion could attain the resolutory ideal, to wit, that one could recover all of classical

probability theory using his approach. As Church writes,

I have every reasonable expectation that the criterion in my paper results
in a class of selections for which this is true. But no real guarantee can be
obtained except by writing a comprehensive work on probability theory,
developing the theory on this basis. And while I suppose this might not
be a difficult task, it is certainly a long one, and I have not actually done
it ([Chu66a], p. 1).

But what about von Mises’ claim that there would always be problems left as

unsolvable when the collection of place selections is fixed once and for all? Church

was not bothered by this possibility,

And I would hold that if it is true that no such calculation procedure
exists [to implement a given place selection], then the indicated method
of selection is an unreasonable one to use in any probability problem.
(Has any one ever used it in a probability problem? I don’t know, but I
would think it unlikely.) ([Chu66a], p. 1)

We thus have two versions of the resolutory ideal of completeness, an unrestricted

version that, according to von Mises, cannot be attained by a definition of probability

given in terms of a fixed collection of place selections, and a restricted version that, in

Church’s view, can be attained in a correspondingly restricted sense by a definition

of probability given in terms of the computable place selection.
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What exactly is at stake with the disagreement over these two versions of the

resolutory ideal? Perhaps not much, for as some have claimed, von Mises would have

opted for restricted version of the resolutory ideal had the definition of computable

function been available when he was first formulating his theory.53 But this is not so

clear, especially given von Mises’ statement that “[i]t is not possible to build a theory

of probability on the assumption that the limiting values of the relative frequencies

should remain unchanged only for a certain group of place selections, predetermined

once and for all” ([vM81], p. 91).

Yet what we gain from the restricted approach is uniformity: on Church’s ap-

proach, there is only one fixed collection of place selections to which we must appeal

to solve every problem that we encounter in practice. On the unrestricted approach,

however, for each problem, we have to determine which place selections should be

used in the solution of the problem, and even though von Mises claims that these

place selections “present themselves”, it’s hard to see how this is supposed to work

in practice.

Thus, which version of the resolutory ideal is to be preferred depends on whether

the uniformity discussed above is to be valued over resolutory completeness. If one

were to show, for instance, that solving problems of the probability calculus is more

53For instance, Church writes to Geiringer,

It seems to me very plausible to say (though of course no proof of such a proposition
can be offered) that the definition that results from the approach of this paper [“On the
Concept of a Random Sequence”] is the one which von Mises in some sense actually
intended when he wrote in 1931, but that it was impossible for him to make the
definition in this way because at that date the precise mathematical definition of
effective calculability did not yet exist ([Chu66b], p. 1).
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efficient on the restricted approach than the unrestricted approach, in that one need

not be saddled with the problem of determining which place selections should be used

to solve a given problem, then this would certainly count in its favor. However, if one

could show that too many problems were left unsolved on the restricted approach,

then this count in favor of the unrestricted approach.

In the next chapter, we will consider another ideal of completeness associated

with definitions of randomness, one that also comes in an unrestricted version and

a restricted version, where the restriction is given in terms of computability, just

as with Church’s restriction of the resolutory ideal. However, unlike the resolutory

ideal, this second ideal, which I call the exemplary ideal of completeness, played an

important role in bringing us to the situation we find in the present day, in which

some claim of a given definition of randomness that it captures our commonly-held

intuitions about randomness. Given that the exemplary ideal and its role in the

development of algorithmic randomness have not been isolated in previous studies,

it certainly merits our close attention.
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CHAPTER 9

THE EXEMPLARY ROLE OF RANDOMNESS

9.1 Introduction

Whereas von Mises’ sought a definition of randomness that would permit the

solution of all problems of the probability calculus, another ideal of completeness

associated with definitions of randomness was introduced by Jean Ville in his dis-

sertation, Étude Critique de la Notion de Collective [Vil39], alongside a number of

results important for both the study of collectives and the development of algorith-

mic randomness. In particular, this ideal was inspired by one of the central results

of the Étude, which shows that von Mises’ collectives satisfy a certain property that

many have taken to reveal a fundamental defect in von Mises’ definition of random-

ness, that is counts as random certain sequences satisfying a property not typical of

sequences produced at random.

In light of this purported defect, Ville hoped to improve upon von Mises’ definition

by reformulating the principle of the impossibility of a gambling system in terms of

a more general notion of a betting strategy than the one employed by von Mises.

Moreover, it was Ville’s goal to produce a definition that was free from this purported

defect. Towards this end, Ville sought a definition D with the property that every D-
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random sequence satisfies all of the properties that are typical of sequences produced

at random, properties I call R-properties ; that is, D-random sequences, although

themselves not necessarily randomly chosen, should exemplify all of the R-properties

of randomly chosen sequences. Such a definition would thus attain what I call the

exemplary ideal of completeness.

There is, however, something rather puzzling about the exemplary ideal. For

Ville never identifies which properties are to be counted as the R-properties, and

moreover, he ultimately concludes that the exemplary ideal is unattainable: “this

[. . . ] problem [of finding a definition attaining the exemplary ideal] is considered

by us as unsolvable” ([Vil39], p. 93). Yet in his 1966 article “The Definition of

Random Sequences” [ML66], Per Martin-Löf presents his definition of randomness,

now known as Martin-Löf randomness, as one that attains the exemplary ideal:

“Finally, the [collectives] introduced by von Mises obtain a definition which seems

to satisfy all intuitive requirements” ([ML66], p. 602).

However, Martin-Löf randomness was not the only candidate for attaining the

exemplary ideal, for several years after the publication of Martin-Löf’s definition,

C.P. Schnorr introduced a slightly weaker definition of randomness,1 nowadays re-

ferred to as Schnorr randomness, which, like Martin-Löf randomness, attained the

exemplary ideal, but which further captured “the true concept of randomness”. In

Schnorr’s view,

Many insufficient approaches have been made [to define randomness] until
a definition of random sequences was proposed by Martin-Löf which for

1That is, every Martin-Löf random sequence is Schnorr random, but not every Schnorr random
sequence is Martin-Löf random.
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the first time included all standard statistical properties of randomness.
However, the inverse postulate now seems to have been violated ([Sch71],
p. 255).

The violation is that Martin-Löf randomness required too many properties, properties

that “are of no significance to statistics” and have no “physical meaning”. For this

reason, Schnorr found Martin-Löf’s definition to be unacceptable.

While the importance of the exemplary ideal in the development of algorithmic

randomness should be clear enough, as it grew out of concerns with a purported

defect of von Mises’ definition and later was claimed to be attained by Martin-

Löf’s definition of randomness, the exemplary ideal is relevant to the larger aims of

this study, those of determining the roles of the various definitions of randomness

and whether any of these definitions can rightly be claimed to provide a conceptual

analysis or explication of the concept of randomness. For there are two salient

features of Ville’s account that we will encounter in later chapters when we consider

extensional adequacy theses such as the MLCT. First, the unclarity in the formulation

of the exemplary ideal, given in terms of these nebulous R-properties, is one that

persists when we inquire into whether one of the various definitions of randomness

is correct. In fact, as I argue, this unclarity proves to be problematic to those who

attempt to establish extensional adequacy theses such as the MLCT.

The second salient feature of Ville’s account is that when Ville seeks a definition

that attains the exemplary ideal, the task of defining randomness appears to be

detached from considerations of the purpose that such a definition might play. While

it is clear from von Mises’ account why he considers a definition of randomness

satisfying (VM1) and (VM2) to be useful, Ville never indicates why a definition of
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randomness that attains the exemplary ideal might be of further use. This feature

also persists: when we arrive at Martin-Löf’s definition, although he claims that

his definition appears to satisfy “all intuitive requirements”, it’s not clear for what

purpose these requirements are to be fulfilled. This, too, is problematic for those

seeking to establish the MLCT or similar theses.

The main goals of this chapter are (1) to trace the path that took Ville from von

Mises’ collectives to the formulation of the exemplary ideal of completeness, (2) to

consider Ville’s reason for holding that the exemplary ideal could not be attained,

and (3) to highlight the introduction of Martin-Löf randomness as a candidate for

attaining the exemplary ideal.

The remainder of the chapter will proceed as follows. First, in Section 9.2, I

explain Ville’s putative counterexample to von Mises’ definition of randomness. This

counterexample led Ville to provide an alternative formalization of a betting strategy

that was intended to be an improvement over von Mises’ definition of a betting

strategy, as I’ll discuss in Section 9.3. Next, in Section 9.4, I introduce the exemplary

ideal of completeness, highlight its central features, and explain Ville’s rationale for

holding that it could not be attained by any definition of randomness. In Section 9.5,

I discuss Martin-Löf’s definition of randomness and his presentation of this definition

as one fulfilling the exemplary ideal. In Section 9.6, I discuss Schnorr’s definition of

randomness and his arguments that his definition, and not Martin-Löf’s, captures

the “true concept of randomness”, and then in Section 9.7, I conclude by discussing

the problematic nature of the exemplary ideal.
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9.2 Ville’s Putative Counterexample to von Mises’ Definition

The first major contribution in Ville’s Étude is often referred to as Ville’s The-

orem, which purportedly shows a fundamental defect in von Mises’ definition of

randomness. Before I lay out the details of Ville’s Theorem, let me say a brief word

on the notation used throughout the ensuing discussion. Hereafter, we will restrict

our attention to collectives in 2ω, and instead of merely referring to C(S ), the col-

lection of collectives in 2ω with respect to the place selections in S as I have done

in the previous chapter, here I will make reference to C(S , p), the collection of S -

collectives in 2ω that have the property that the limiting relative frequency of 1 is

equal to p ∈ (0, 1).

9.2.1 Ville’s Theorem

As motivation for his main theorem, Ville states the following result:2

Theorem. Let p ∈ (0, 1) and A ⊆ 2ω. Then there is a countable collection of place

selections S such that C(S , p) ⊆ 2ω \ A only if A has p-measure zero.3

In other words, given a set A ⊆ 2ω, we can ensure by some choice of place selections

S that no collective X ∈ C(S , p) belongs to A only if λp(A) = 0 (where λp is the

2This result is essentially a more general version of Doob’s Theorem, discussed in footnote 25
in Chapter 8.

3The p-measure of a set X ⊆ 2ω is also referred to as Bernoulli p-measure, a generalization of
the Lebesgue measure. Given σ ∈ 2<ω, let #0(σ) and #1(σ) denote the number of 0s and 1s in σ,
respectively. Then the p-measure of the basic open set determined by σ, JσK = {X ∈ 2ω : σ ≺ X},
is defined to be

λp(JσK) = p#0(σ)(1− p)#1(σ),

which reduces to the Lebesgue measure when p = 1
2 .
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p-measure defined in footnote 3 below). It is natural to ask whether the converse

holds: can every set of p-measure zero be covered by the complement of a fixed set

of collectives? Ville’s Theorem shows us that the answer is “no”. That is, Ville

shows that for some p ∈ (0, 1), there is a set G of p-measure zero such that for any

countable collection S of place selections, C(S , p)∩G 6= ∅. In particular, he shows,

Theorem (Ville’s Theorem). For any countable collection S of place selections,

there is X = x1x2x3 . . . ∈ C(S , 1
2
) such that for every n,

#{i < n : xi = 1}
n

≥ 1

2
.

Thus, for every countable collection S of place selections, we can always find a

sequence X ∈ 2ω that is a collective relative to S , but has the property that every

one of its initial segments contains more 1s than 0s. Now, if we define

G :=

{
X ∈ 2ω : (∀n)

#{i < n : xi = 1}
n

≥ 1

2

}

one can show that λ(G) = 0, which follows from a classic result known as the Law

of the Iterated Logarithm, first proven by A.Y. Khinchin in 1924, and later, in a

different form, by A.N. Kolmogorov in 1929.4 Thus, Ville identifies a collection

G such that, for every collection of place selections S , there will be a collective

X ∈ C(S , 1
2
) that belongs to G.

4For details of the Law of the Iterated Logarithm, see, for instance, Chapter VIII.5 of [Fel68].
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9.2.2 Consequences of Ville’s Theorem?

It has been claimed by a number of individuals, including Fréchet in his address at

the 1937 Geneva conference, that Ville’s Theorem reveals a fundamental defect in von

Mises’ definition. But what exactly is this defect? In other words, to what statement

is Ville’s counterexample a counterexample? These questions are especially pressing,

given that von Mises was aware of Ville’s Theorem, but was entirely unmoved by it.5

In the subsequent literature on the implications of Ville’s Theorem for von Mises’

theory of probability, one finds at least three different answers to these questions:

1. Ville’s Theorem shows that von Mises’ definition does not capture our commonly-

held intuitions of randomness.

2. Ville’s Theorem show that von Mises’ definition cannot serve as the foundation

for measure-theoretic probability.

3. Ville’s Theorem shows that von Mises’ definition is given in terms of inadequate

formalization of a betting strategy.

Let’s consider each answer in turn.

9.2.2.1 Response 1: On commonly-held intuitions of randomness

This first response is summed up well by Rod Downey and Denis Hirschfeldt

in their recently published monograph Algorithmic Randomness and Complexity

5He even says as much in his response published in the proceedings of the 1937 Geneva confer-
ence: “I accept this theorem, but I do not see in it an objection, and I do not find in it a reason to
modify the theory of collectives.” In the original French: “J’accepte ce théorème, mais je n’y vois
pas une objection et n’y trouve pas une raison pour modifier la théorie du collectif” ([vM38], p.
66).
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[DH10]. They write of any sequence contained in the set G defined above, “Such

a sequence is clearly not random. After all, if we were to flip a supposedly fair coin

many times and never at any point observed an excess of tails over heads, we would

surely begin to suspect that something was amiss” ([DH10], p. 230).6 This is perhaps

the most commonly offered response to the question as to whether Ville’s Theorem

shows von Mises’ definition of randomness to be defective. While most would agree

that a definition of randomness that is intended to capture our commonly-held in-

tuitions of randomness should not include as random any sequence in the set G, von

Mises would not be moved by this objection to his definition because his goal was

not to capture some absolute definition of randomness. Rather, as was detailed in

the previous chapter, von Mises wanted a definition of randomness that would en-

able him to solve problems in the probability calculus, and there’s no indication in

his works that he thought that a definition that captured all of the commonly-held

intuitions of randomness would thereby permit the solution of all problems of the

probability calculus.7

6A related response is summarized by van Lambalgen, who writes,

[Collectives] do not necessarily satisfy all asymptotic properties proved by measure
theoretic methods and since the type of behaviour exemplified by [the property
#{i<n:xi=1}

n ≥ 1
2 holding of a sequence for every n] will not occur in practice (when

tossing a fair coin), [collectives] are not satisfactory models of random phenomena
([Lam87], p. 52).

7This holds true of the later formulation of his theory, for as we discussed in Section 8.4.2, on
the later approach the amount of invariance required to hold of collectives was determined by the
problem one was trying to solve.

233



9.2.2.2 Response 2: On the foundation of measure-theoretic probability

This second response is summed up by Glenn Shafer, who writes,

The main point of [Ville’s] critique of collectives was that von Mises’ and
Wald’s idea of selecting subsequences was inadequate as a foundation for
classical probability theory. [. . . ] It was also inadequate for representing
the classical idea of ruling out events of probability zero, because the
relative frequency of 1s in a sequence of 0s and 1s can converge to a
number p and yet do so in a way that has probability zero [. . . ] and
this behavior cannot be ruled out by specifying a countable number of
subsequences on which the limiting frequency must also converge to p
([Sha09], p. 37).

The key claim here is that if von Mises’ definition is to serve as a foundation for

classical probability, it should count as having p-measure zero those events that are

counted as having p-measure zero according to classical probability. In defense of

this claim, one might argue that there are problems of measure-theoretic probability

that cannot be solved in von Mises’ framework (such as showing the set G to have

Lebesgue measure zero), and thus if we want a definition of probability that permits

us to solve all problems of measure-theoretic probability, von Mises’ definition will

not suffice.

Again, von Mises would not be threatened by this objection, given that he was

not attempting to develop a foundation for measure-theoretic probability. In fact,

von Mises explicitly contrasts his frequency-theoretic approach to probability with

the measure-theoretic approach, which takes Kolmogorov’s axioms of probability

as a starting point. While on von Mises’ approach, collectives are the primitive

objects in terms of which one defines probability, on the approach given in terms of

Kolmogorov’s axioms, one takes probability as the primitive term. Further, on von
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Mises’ approach, calculations in the probability calculus are rooted in operations

on collectives, which guarantee that the standard axioms of probability hold. By

contrast, on the measure-theoretic approach, the situation is inverted, as the axioms

of probability are the starting point of our calculations. In general, von Mises did

not think his theory was bound by the standards of measure-theoretic probability.

9.2.2.3 Response 3: An inadequate formalization of a betting strategy

This last response was offered by Ville, who held that his theorem shows von

Mises’ formalization of a gambling system to be defective, insofar as it is inadequate

for representing the idea of the impossibility of a gambling system. In particular,

given a sequence in G that has more 1s than 0s in every initial segment, a gambler

should be able to make use of the knowledge to make arbitrarily large amounts of

money. The problem with von Mises’ formalization of a gambling system is that it

only allows the gambler to choose the trials on which he will bet, whereas in reality,

a gambler can do more than merely choose trials; he can also vary the amount of his

bet. But the gambler who employs a von-Mises- gambling system cannot capitalize

on the knowledge that the sequence on which he is betting is biased in all of its initial

segments. As Ville puts it in his Étude,

There is a very important restriction there; von Mises does not try to
translate in a completely general manner the conduct of a player who
tries to modify his chances. He only speaks of a systematic choice of
moves, and does not try to express the fact that one can equally try to
modify his chances by a systematic distribution of his bets. We shall
see that the restriction made by von Mises prevents it from attaining, at
least in our view, the end that he seems to be proposing in writing the
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passage cited.8,9 ([Vil39], p. 89)

From von Mises’ point of view, this perceived defect is not truly a defect. While

the notion of a gambling system plays a useful role in motivating his second axiom

(VM2), the principle of the impossibility of a gambling system, the bottom line for

von Mises is always solving problems in the probability calculus. Does the fact that

his formalization of a gambling system is not sufficiently general result in there being

certain problems that are not solvable? Given his view that his definition can attain

the tory ideal, von Mises surely would not accept this. In the end, thinking of place

selections as gambling systems may be a useful heuristic, but for the purposes of

solving problems, it is entirely dispensable.

Thus, as far as von Mises was concerned, Ville’s Theorem had no implications

for his theory of probability. Invariance of limiting relative frequencies under place

selection guarantees that calculations could be carried out: even with the property

given by the set G above, the possibility of carrying out the requisite calculations is

8In the original French:

Il y a là une restriction très importante; M. de Misès ne cherche pas à traduire d’une
manière tout à fait générale la conduite du joueur qui cherche à modifier ses chances. Il
ne parle que d’un choix systématique des coups, et ne cherche pas à exprimer le fait que
l’on peut également chercher à modifier ses chances par une répartition systématique
des mises. Nous verrons (p. 83) que la restriction faite par M. des Misès l’empêche
d’atteindre pleinement, à notre avis du moins, le but qu’il semble s’être proposé en
écrivant le passage cité.

9The passage to which Ville refers is from von Mises’ 1931 volume Vorlesungen aus dem Geiete
der angewandten Mathematik (Lectures from the Field of Applied Mathematics) [Mis45]. Ville
quotes a French version of this passage: “Le fait que l’on ne peut modifier ses chances par un choix
systématique des coups [sur lesquels on mise] compte parmi les conceptions les plus essentielles qui
sont, à nos yeux, indissolublement lièes à la notion de ¡¡hasard¿¿ et de jeu de hasard.” (“The fact
that we cannot modify our chances by a systematic choice of trials on which to place our bets is
among the most essential conceptions which are, in our eyes, indissolubly linked to the notion of
‘chance’ and of gambling” ([Vil39], p. 89).
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not jeopardized.10

9.3 Ville’s Alternative Formalization of a Betting Strategy

In the beginning of the fourth chapter of his Étude, “Criteria of Irregularity Based

on the Notion of Martingale”,11 Ville writes, “In this chapter we propose a new

manner of expressing the axiom of irregularity of von Mises [i.e. (VM2)], which still

conforms to his general idea [. . . ], but which is not equivalent to the mathematical

translation that he has given it.”12 ([Vil39], p. 85) Thus we see that Ville does

not entirely reject von Mises’ approach; rather Ville just seeks to give an improved

formulation of von Mises’ second axiom of collectives that isn’t vulnerable to the

purported defect exposed by Ville’s Theorem.

To this end, Ville considers the following general situation. Suppose a gambler is

10I don’t think the book is closed on this matter, for there is an additional way in which Ville’s
Theorem might pose a problem for von Mises’ account. Glossing over some important details,
the idea is this: Von Mises expresses the view, thoroughly spelled out by van Lambalgen in his
dissertation, that in order for a theorem of measure-theoretic probability to be physically meaningful
(whatever this is supposed to mean), it must be translatable into a theorem about collectives. Thus,
given that the Law of the Iterated Logarithm cannot be shown to hold in terms of collectives, it
is not a physically meaningful result. The problem is that other features of von Mises’ account
commit him to the claim that the passage from results about finite sequences of attribute to their
infinitary analogues preserves physical meaning (so that the limit of physically meaning finitary
properties is a physically meaningful infinitary property).What’s more, one can show that a finite
version of the Law of the Iterated Logarithm holds of collectives, which, in the limit, yields the
standard Law of Iterated Logarithm for infinite sequences. Thus von Mises faces a dilemma: either
he has to deny that the passage from finitary properties to their infinitary analogues preserves
physical meaning (which would undercut the supposed empirical basis of his theory) or he has to
concede that his account does not have the inside track with respect to determining the physical
meaning of statements of measure-theoretic probability.

11In the original French: “Critères d’Irrégularité Fondés sur la Notion de Martingale”.

12In the original French: “Nous allons dans ce chapitre proposer une nouvelle manière d’exprimer
l’axiome d’irrégularité de M. de Misès, qui reste conforme à son idée générale [. . . ], mais non
équivalente à la traduction mathématique qu’il en a donnée.”
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betting on a sequence X of which he knows

(∗) The limiting relative frequency of X is not equal to p.

Equipped with this piece of information (∗), but no other information about the

specific values of X, nor the actual limiting relative frequency of X, how can the

gambler win arbitrarily large amounts of money in betting on X?13

While there is, in general, no method for a gambler to exploiting a bias in a

sequence by means of place selections14 (or, more precisely, in the case that the gam-

bler knows that there is a bias, but does not know what it is), Ville’s was eventually

13We should note that the bias problem was not merely a theoretical question for Ville, as it was
inspired by conversations with a relative of his, who happened to be a professional gambler. In a
letter to the French mathematician Pierre Crepel shortly before Ville’s death, Ville recounts these
conversations:

But I had an acquaintance, a relative of the woman who became my wife, who claimed
to make a (modest) living by gambling, which he pursued like a drudge, “working”
for hours recording and counting the outcomes of boule or roulette spins, and then
betting according to a calculation that he kept secret. His name was Mr. Parcot. I
claimed that it was impossible for him to win. The probability calculus showed that
for simple martingales, everything ended up a loss. Because the calculus was applied
to martingales one by one, the layman was left with the impression that one could
find a crack in the armor and slip though. Mr. Parcot claimed to have found a crack.
I did not try to convince him; I don’t even remember now if I had an opportunity
to do so. I knew that there was a general refutation of the possibility of winning for
sure, but I went no farther. Mr. Parcot’s continuing profits simply made me think.
Why not? I knew that a certain role was played by confusions between infinitely small
and zero, and between actual and virtual infinity, nothing more. I did not doubt Mr.
Parcot’s good faith, and there was something that pointed out a path. [. . . ] I studied
the probability calculus in Laplace, and I found there a way to win in heads and tails
if you know the coin is asymmetric without knowing which side is favored. From this,
I concluded that Parcot had perhaps discovered and taken advantage of a flaw in the
roulette wheel. Taking advantage of a known flaw in a roulette wheel is child’s play,
but taking advantage of the fact, for example, that the spins are not independent,
without knowing exactly how they are dependent, is another matter. So this is where
I was, say in 1932 ([Cré09], pp. 14-15).

14The reason for this is that von Mises’ notion of a gambling system doesn’t take into account
the winnings of a gambler.
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able to solve the bias problem by means of martingales.

9.3.1 The Definition of Martingale

For Ville, a martingale is a formalization of a game in which a gambler bets on

the values of a sequence. Let A be a gambler , let X = x1x2x3 . . . ∈ 2ω be some

sequence, and let p, q ∈ (0, 1) be such that p+ q = 1. The details of the game are as

follows: At the start of the game, A has capital s0 = 1. A then wagers some portion

of his capital λ0 that the first value of X will be a 0, and some portion µ0 that the

first value will be a 1, where λ0 + µ0 ≤ 1.15 If a 0 occurs, A receives λ0

p
(and loses

µ0

q
), and if a 1 occurs, he receives µ0

q
(and loses λ0

p
). Thus, A’s capital at the end of

the first round of the game will be either be

1 +
λ0

p
− µ0

q
,

in the event that a 0 occurs, or

1 +
µ0

q
− λ0

p
,

in the event that a 1 occurs.

More generally, suppose that A has capital sn at the end of the nth round of the

game, having already bet on x1x2 . . . xn. Then we define two functions λn and µn

as follows: λn(x1, x2, . . . , xn) is the portion of A’s capital that he will bet that the

15The fact that λ0 +µ0 ≤ 1, rather than λ0 +µ0 = 1, means that A can choose to bet only some
of his capital at a given round. In fact, A even has the option of setting λ0 = µ0 = 0, which is to
say, A has the option of not betting any money on either outcome.
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(n+1)st value of X, xn+1, is a 0, while µn(x1, x2, . . . , xn) is the portion of A’s capital

that he will bet that xn+1 is a 1. That is, A bets the amount λnsn on the occurrence

of a 0, and the amount µnsn on the occurrence of a 1. As before, if a 0 occurs, he

will receive λn
p
sn, and if a 1 occurs, he will receive µn

q
sn. Thus we have

sn+1 =


λn
p
sn + (1− λn − µn)sn if xn = 0

µn
q
sn + (1− λn − µn)sn if xn = 1

where the second summand (1− λn − µn)sn in each of the two above expressions is

the amount of capital that A decides to save at the (n+ 1)st round (that is, he need

not bet his entire capital at each round). More explicitly, we have

sn+1(x1, x2, . . . , xn, 0) =
λn
p
sn(x1, x2, . . . , xn) + (1−λn−µn)sn(x1, x2, . . . , xn) (9.1)

and

sn+1(x1, x2, . . . , xn, 1) =
µn
q
sn(x1, x2, . . . , xn)+(1−λn−µn)sn(x1, x2, . . . , xn). (9.2)

Combining equations (9.1) and (9.2), rearranging terms, and applying a few straight-

foward algebraic operations, we get

sn(x1, x2, . . . , xn) = psn+1(x1, x2, . . . , xn, 0) + qsn+1(x1, x2, . . . , xn, 1). (9.3)

After developing all of this machinery, Ville defines a martingale to be the system
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of games corresponding to the functions {sn}n∈ω that satisfy (9.3).16

Let us make a few clarifying remarks about this definition. First, the role that

the values p and q play in the above definition is that they represent the odds that

determine the payoffs made by the house to those who make winning bets. In the

case that p = q = 1
2
, the payoff for the game is double-or-nothing. That is, if A

successfully predicts the next value of the sequence, he receives a payment equal

to double the bet that he placed on that outcome; if he fails to predict the next

value, he loses his entire bet. Second, given a sequence X that has limiting relative

frequencies of p and q for the attributes 0 and 1, respectively, the game will be fair

if the payoff for successfully predicting a 0, given a bet α, is α
p

(and thus the payoff

for successfully predicting a 1 after a bet of α is α
q
). For instance, if a 1 occurs

only 1
10

th of the time in a sequence, then a fair payoff would be to give A ten times

her original bet whenever she successfully predicts the occurrence of a 1. Third, in

current work in algorithmic randomness, a martingale is simply defined as a function

M : 2<ω → R≥0 such that

2M(σ) = M(σ0) +M(σ1), (9.4)

where the payoff is given by p = q = 1
2
.17 That is, the term ‘martingale’ is usually

reserved for those functions that satisfy the equation (9.4). To avoid ambiguity, I

16Unfortunately, Ville isn’t entirely clear about what it means for a martingale to be the system
of games corresponding to the functions {sn}n∈ω that satisfy (9.3), for he only provides a high-level
description of these games. The standard approach nowadays is to identify the martingale with the
functions {sn}n∈ω (actually, just one function that agrees with each sn on strings of length n, given
by (9.4) below).

17More generally, if the underlying measure is a Bernoulli p-measure, λp, where a 1 occurs with

241



will henceforth use the term “p-martingale” to refer to any function M : 2<ω → R≥0

that satisfies

M(σ) = pM(σ0) + qM(σ1)

(where p + q = 1) and the term “martingale” to refer to a p-martingale for some

p ∈ (0, 1).

Although we’ve defined Ville’s notion of a betting strategy, we haven’t defined

what it means for a gambler to succeed when employing a given strategy. The

idea is straightforward: a martingale M succeeds on a sequence X if for every N ,

there is some initial segment X�n of X such that M(X�n) ≥ N ; that is, a gambler

using M will win arbitrarily much capital as she bets on the initial segments of X.

But in Ville’s formulation, this doesn’t mean that gambler’s winnings simply grow

without bound. Instead, her winnings can dip down to levels arbitrarily close to 0

infinitely often, as long as infinitely often her winnings grow larger and larger. Thus,

a p-martingale M succeeds on X ∈ 2ω if

lim sup
n→∞

M(X�n) =∞.

For a fixed p-martingale M , let SM,p, the success set of M , be the collection of X ∈ 2ω

probability p, then a λp-martingale is a function M : 2<ω → R≥0 such that

M(σ) = pM(σ0) + qM(σ1).

In the most general case, which Ville doesn’t consider, for a probability measure µ on 2ω, a µ-
martingale M is a function M : 2<ω → R≥0 that satisfies

M(σ) = µ(σ0|σ)M(σ0) + µ(σ1|σ)M(σ1),

where µ(σi|σ) is the conditional probability µ(σi)
µ(σ) for i ∈ {0, 1}.
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on which M succeeds. Thus, M succeeds on X ∈ 2ω if and only if X ∈ SM,p.
18

Having established his definition of martingale, Ville next turns to the task of

extending von Mises’ axiom of irregularity by means of the notion of martingale.

9.3.2 Ville’s Correspondence between Martingales and Null Sets

Ville opens his next section, “Extension of the axiom of irregularity in the sense of

von Mises-Wald by means of the notion of martingale”,19 by writing, “It is clear from

von Mises’ account that the notion of selection and of the invariance of frequency

was intended in his mind to express the impossibility of indefinitely winning a fair

game”([Vil39], p. 89).20 As noted above, Ville held that in von Mises’ formulation

of the principle of the impossibility of a gambling system, an important aspect of

a gambler’s behavior was not captured: the ability of the gambler to vary his bets.

Ville, by contrast, was able to show on his approach to betting strategies, a bias

could be exploited by a gambler to win arbitrarily much capital, for he proved the

following:

Theorem 9.1. For every set U ⊆ 2ω of p-measure zero, there is a p-martingale M

18One might worry here that this definition involves a standard of success that is too idealized,
as the gambler who employs it must have unbounded resources of time at her disposal. While one
can slightly weaken the criterion of success by replacing the lim sup in the definition of success with
a limit, if we weaken the criterion of success so that a gambler can succeed on a sequence only after
finitely many steps, then whether a martingale succeeds on a sequence will be determined by its
finite initial segments, a consequence hardly appropriate for defining random sequences.

19In the original French, “Élargissement à l’aide de la notion de martingale de l’axiome
d’irrégularité au sens de de Misès-Wald.”

20In the original French: “Il ressort de l’exposé de M. de Misès que la notion de sélection et
d’invariance de la fréquence était destinée dans son esprit á exprimer l’impossibilité de gagner
indéfiniment à un jeu équitable.”
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such that U ⊆ SM,p.

In other words, for every set U of p-measure zero, there is a p-martingale that

succeeds on every sequence in U . In particular, if we let U be the collection of

sequences X that have limiting relative frequency not equal to p, then since U is a

set of p-measure zero, it follows from Theorem 9.1 that there is a p-martingale M

such that U ⊆ SM,p.
21

Another consequence of Theorem 9.1 is that Ville’s formulation of gambling sys-

tem extends that of von Mises:

Corollary 9.2. For every countable collection of place selections S and every p ∈ (0, 1),

there is a p-martingale M such that 2ω \ C(S , p) ⊆ SM,p.

For every countable collection S of place selections, there is a martingale M that

succeeds on the set of sequences that are not invariant under the selections in S .

Thus, Ville’s formulation of a gambling system is an extension of that of von Mises:

for every von-Mises-gambling system, there is a Ville-gambling-system that succeeds

on every sequence on which the von-Mises-gambling-system succeeds. Further, Ville’s

Theorem shows is that the converse of the above corollary doesn’t hold: If we let

G :=

{
X ∈ 2ω : (∀n)

#{i < n : xi = 1}
n

≥ 1

2

}

as in the proof of Ville’s Theorem, then there is a 1
2
-martingaleM such that G ⊆ SM, 1

2
,

21Note that Ville doesn’t tell us explicitly how to compute the martingale M . An explicit
construction can be found in Laurent Bienvenu’s his dissertation, Game-theoretic Characterizations
of Randomness: Unpredictability and Stochasticity [Bie08]. There he shows that for any δ > 0, one
explicitly define a 1

2 -martingale Mδ that succeeds on any sequence for which the limiting relative
frequency of 1s is greater that 1

2 + δ.
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but there is no collection of collectives S such that C(S , 1
2
) ⊆ 2ω \ SM, 1

2
. For

otherwise we would have

G ⊆ SM, 1
2
⊆ 2ω \ C(S ,

1

2
),

which is impossible by Ville’s Theorem.

It should be mentioned that Ville also proved the converse of Theorem 9.1, a

result that will be of interest shortly.

Theorem 9.3. For a fixed p-martingale M , the success set of M , SM , p has p-

measure zero.

Thus, Ville establishes a one-to-one correspondence between martingales and null

sets.

9.4 The Exemplary ideal of Completeness

9.4.1 In Search of an Improved Axiom of Irregularity

Having provided his definition of martingale and established the correspondence

between martingales and null sets, Ville turns his attention to isolating those prop-

erties in terms of which he can define randomness, or as Ville puts it, irregularity.

To motivate his account of irregularity, Ville writes in the first section of his fourth

chapter,

We will see that one can give conditions of irregularity (more strict than
those of Wald22), forming a system C of conditions C such that if one

22Throughout his dissertation, Ville often refers to “Wald’s conditions of irregularity” or “the

245



also denotes by C the set of points x such that the sequence x satisfies
the condition C, one has the property:

(Γ). Any set in the complement of a set C can be enclosed in a set of
p-measure zero, and any set of p-measure zero can be enclosed in the
complement of a set C ([Vil39], p. 86).23

In other words, Ville intended for his conditions of irregularity to be invulnerable

to the deficiency of von Mises’ approach as revealed by Ville’s Theorem. That is,

Ville’s expresses the goal of providing conditions of irregularity, subsets of 2ω that I

will refer to as irregular sets, so that not only is the complement of every irregular

set (which I will call a regular set) contained in a set of measure zero, but every set

of measure zero is contained in a regular set.

But which sets should be counted as the irregular sets? Ville considers one

suggestion, “There is an immediate way to answer the question [as to which sets are

the irregular sets]; it is to take C to be all the sets of p-measure equal to 1, or even

only the Fσ
24 sets of p-measure equal to 1” ([Vil39], p. 87).25 However, the astute

von Mises-Wald conditions”, but to be consistent with my usage in earlier chapters, I will refer
to these conditions as “von Mises’ conditions of irregularity” (although Wald is certain worthy of
credit for sharpening von Mises’ definition).

23In the original French:

Nous allons voir que l’on peut donner des conditions d’irrégularité (plus strictes que
celle de M. Wald), formant un système C de conditions C telles que si l’on désigne
également par C l’ensemble des points x tels que la suite x satisfasse á la condition C
(p. 49), on ait la propriété: (Γ). Tout ensemble complémentaire d’un ensemble C peut
être enfermé dans un ensemble de p-mesure nulle, et tout ensemble de p-mesure nulle
peut être enfermé dans un complémentaire d’ensemble C.

24A set S ⊆ 2ω is Fσ if it is the countable union of closed subsets of 2ω.

25In the original French: “Il y a une manière immédiate de résoudre la question, c’est de prendre
pour les C tous les ensembles de p-mesure égale à 1, ou même seulement les Fσ de p-mesure égale
à 1.”
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reader will recognize that there is a serious problem with this approach: If we were

to take the conditions of irregularity C to be the collection of all sets of measure

one, then the result would be a vacuous notion of irregularity, as the intersection of

all such sets would be empty, for the simple reason that for each X ∈ 2ω, the set

2ω \{X} has measure one. This is just another version of the admissibility objection

raised against von Mises’ definition of collectives, the upshot of which is that if we

define collectives in terms of every place selection, we end up with a trivial definition

of randomness.

Ville recognized that the collection of irregular sets must be restricted in some

way, and he was aware of this version of the admissibility objection,26 but he didn’t

justify the claim by appealing to this objection. Instead, he gives a surprisingly

different reason, writing, “But these conditions of irregularity no longer present any

intuitive character” ([Vil39], p. 87, emphasis added).27 But what is this intuitive

character, and why should it act as a constraint on our choice of the irregular sets?

At this point of his discussion in the Étude, Ville doesn’t say, but instead presses on

to determine which sets should be taken to the be irregular sets. Let’s press on with

him, returning to these questions about the intuitive character shortly.

Now, given the correspondence between martingales and sets of null sets that we

discussed at the end of Section 9.3, the question

“Which conditions should be used to characterize the axiom of irregular-
ity?”

26In particular, he references the admissibility objection in passage on Fréchet and Lévy quoted
below on page 249.

27In the original French, “Mais ces conditions d’irrégularité ne présentent plus aucun caractère
intuitif.”
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can be reformulated as

“Which martingales should be used to define the axiom of irregularity?”

Although one might hope that with this recast question, we are in a better position

to characterize irregularity in terms of martingales instead of place selections, Ville

concedes that even on his more general account, there is no reasonable answer to be

given. He writes,

But the condition of irregularity given in terms of martingales is relative;
it assumes a prior choice of properties (of probability zero) to exclude. If,
in a certain sense, it solves the question of irregularity more completely
than the condition of Wald, it fails to give an arithmetical model of a
sequence with all the characteristics of a sequence taken at random; this
last problem is considered by us as unsolvable, and we submit ourselves
on this point to the opinion of numerous mathematicians, among them
E. Borel, Fréchet, P. Lévy ([Vil39], p. 93, emphasis added).28

This is a telling passage, for it clearly indicates what Ville was aiming for in iden-

tifying the conditions of irregularity: Ville wanted a definition of irregularity that

would provide “an arithmetical model of a sequence with all the characteristics of a

sequence taken at random”. But not just any model will do: Ville sought a complete

definition, one satisfying all the properties typically held by sequences chosen at ran-

dom, properties I referred to in the introduction as R-properties. This, then is the

28In the original French:

Mais la condition d’irrégularité par la martingale est relative; elle suppose un choix
préalable des propriétés (de probabilité nulle) à exclure. Si, dans un certain sens, elle
résout la question de l’irrégularité plus complètement que la condition de M. Wald, elle
ne parvient pas à donner un modèle arithmétique d’une suite présentant tous les car-
actères d’une suite prise au hasard; ce dernier problème est considéré par nous comme in-
soluble, et nous nous soumettons sur ce point à l’opinion de nombreux mathématiciens,
parmi lesquels MM. E. Borel, Fréchet, P. Lévy.
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exemplary ideal of completeness: a definition D of randomness is complete if and

only if all D-random sequences, being paradigmatic instances of randomly chosen

sequences, satisfy all R-properties.

9.4.2 The Exemplary Ideal as Unattainable

But why exactly did Ville hold that the exemplary ideal was unattainable? From

the quote given above, the answer appears to be that on the one hand, a definition of

irregularity given in terms of martingales is always relative to a choice of martingales,

but on the other hand, in Ville’s view, only an absolute definition, one not determined

by a choice of martingales, could attain the exemplary ideal.

Further elaborating on this relativity in the concluding chapter of the Étude, Ville

writes,

We concede that the definition [of irregularity] can only be relative, and
here is why: as noted by Fréchet, if we want to clarify how we might
recognize in the classical theory the sequences that do not have the char-
acter of incidental sequences, one is led to consider as non-incidental the
sequences that are logically possible, but which are not encountered in
practice, that is to say, which have a property of which the probability
is zero in the modernized classical theory. Or, as noted by P. Lévy, if
one excludes all the sequences presenting a property of probability zero,
one excludes all the logically possible sequences. It is then necessary to
make a choice among the properties of probability zero. Once this choice
is made, the sequences that do not possess these properties will be con-
sidered as irregular relative to these properties ([Vil39], pp. 135-136).29

29In the original French,

Nous concédons que la définition ne peut ètre que relative, et voici pourquoi: comme l’a
fait remarquer M. Fréchet, si l’on veut préciser comment on pourrait reconnâıtre dans
la théorie classique les suites qui n’offrent pas le caractère des suites fortuites, on est
amené à considérer comme non fortuites les suites logiquement possibles, mais qu’on
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In Fréchet’s view, to define the irregular/incidental sequences, we should take as

regular/non-incidental those sequences that are not encountered in practice (though

it is not impossible for them to occur); for instance, the infinite sequence of all heads

produced by the tosses of a fair coin is such a sequence.30 But according to Lévy,

there is no non-arbitrary choice of sets of measure zero in terms of which we can

define these irregular sequences. Thus, if both Fréchet and Lévy are right, we have

no alternative but to define irregularity as a relative notion.

Ville reiterates this conclusion in the paragraph that follows the passage about

Fréchet and Lévy given above:

In this manner, the notion of irregularity is defined in a relative manner:
the systems of properties of probability zero is chosen arbitrarily. If the
system chosen is denumerable, there will exist surely sequences irregular
with respect to this system. We thus obtain a relative, but coherent,
definition of irregularity. We can consider this solution as incomplete,
but the solution of this question, in our view, cannot be made such. All
we can do is seek to make the solution less abstract ([Vil39], p. 136).31

ne rencontre pas pratiquement, c’est-á-dire qui ont une propriété dont la probabilité
est nulle dans la théorie classique modernisée. Or, comme l’a fait observer M. P. Lévy,
si l’on exclut toutes les suites présentant une propriété de probabilité nulle, on exclut
toutes les suites logiquement possible. Il faut donc faire un choix parmi les propriétés de
probabilité nulle. Une fois ce choix fait, les suites qui ne posséderont pas ces proprietétés
seront considérées comme irrégulières relativement à ces propriétés.

30More precisely, sufficiently long initial segments of this sequence are not encountered in prac-
tice.

31In the original French,

De cette maniére, la notion d’irrégularité est définie de manière relative; ce qui est choisi
arbitrairement, c’est le système de propriétés de probabilité nulle. Si le système choisi
est dénombrable, il existera sûrement des suites irrégulières relativement à ce système.
Nous obtenons ainsi une définition relative, mais cohèrente, de l’irrégularité. On peut
considérer cette solution comme incomplète, mais la solution de cette question, à notre
avis, ne peut être que telle. Tout ce que l’on peut faire, c’est de chercher à rendre la
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Here Ville repeats that the claim that the exemplary ideal of completeness cannot

be attained; not only is his solution to the irregularity problem incomplete, but no

solution can be complete. But he adds an interesting twist that does not appear

in his earlier discussion of the unattainability the exemplary ideal: “All we can do

is seek to make the solution less abstract.” What does it mean of a solution to be

abstract, and what does it mean for one solution to be less abstract than other?

Ville provides a first clue when he later writes, “The definition of irregularity

by selections, proposed by Wald, has the advantage of having a concrete sense; but

it is not equivalent to the above abstract definition, although it is also a relative

solution” ([Vil39], p. 136).32 Later, he sheds more light on the concreteness of the

von Mises-Wald definition, writing, Ville continues,

On the contrary, to give a countable system of selections and to exclude
the sequences where the total frequency is destroyed or modified by ap-
plication of selections from the system, this is a proposition that has an
immediate sense and one we can place at the beginning of a theory, as
did M. Wald; similarly, to give a martingale and to exclude the sequences
where a player, in applying this martingale, wins indefinitely, this has a
very concrete sense, independent of all measure theory. We will consider
these last criteria as satisfying from an intuitive point of view ([Vil39], p.
138).33

solution moins abstraite.

32In the original French, “La définition de l’irrégularité par les sélections, proposée par M. Wald,
a l’avantage d’avoir un sens concret; mais elle n’est pas équivalente à la définition abstraite ci-dessus,
bien qu’elle aussi soit une solution relative.”

33In the original French,

Au contraire, se donner un système dénombrable de sélections et exclure les suites où la
fréquence totale est détruite ou modifiée par application d’une des sélections dy système,
c’est là une proposition qui a un sense immédiat, et que l’on peut placer au début d’une
théorie, comme l’a fait M. Wald; de même, se donner une martingale et exclure les
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Thus, some characterizations of irregularity are concrete, immediate, and intuitive.

What is distinctive of these characterizations is that they are not given in purely

extensional terms but are given by some appropriate description (involving intuitive

notions such as betting strategies and games of chance), unlike the “abstract condi-

tions of irregularity”, the phrase Ville uses to refer to the sets of measure one. Ville

is clear on this point, saying of these abstract conditions that they do not have a

“concrete and intuitive meaning” ([Vil39], p. 137). In support of this claim, Ville

observes that the complement of the Cantor set34 is included among these abstract

conditions of irregularity, but taking the complement of the Cantor set to be a crite-

rion of irregularity is, in his view, “a proposition that will be considered as reasonable

only by someone who has pushed far enough in the study of probability, and which,

separated from measure theory and the theory of denumerable probabilities, seems

arbitrary” ([Vil39], p. 138).35,36 In this respect, the choice to include the comple-

ment of the Cantor set among the irregular sets is not intuitive, requiring additional,

specialized knowledge to justify the inclusion.

Thus, we have concrete and abstract characterizations of irregularity, and con-

suites où un joueur, en appliquant cette martingale, s’enrichit indéfiniment, cela a un
sens très concret, indépendant de toute théorie de la mesure. Nous considérerons ces
derniers critères comme satisfaisants au point de vue intuitif.

34The middle third Cantor set is a subset of [0,1] of measure zero, formed by removing the middle
third from [0,1], then the middle thirds of the remaining intervals [0, 1

3 ] and [2
3 , 1], and so on.

35“une proposition qui ne sera considérée comme raisonnable que par quelqu’un qui a poussé assez
loin l’étude des probabilités, et qui, séparée de la théorie de la mesure et de celles des probabilités
dénombrables, parâıt arbitraire.”

36Ville adds, “We consider such a criterion as not having an immediate subjective meaning”
(“Nous considèrons un tel critére comme n’ayant pas de signification subjective immédiate.”)
([Vil39], p. 138).
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crete ones are to be preferred to the abstract ones. But further, according to Ville,

certain concrete characterizations of irregularity are more complete than others. But

how do we measure the degree of completeness of a concrete characterization of

irregularity?

The answer is to consider the relation of implication that might hold between a

concrete condition of irregularity and an abstract condition of irregularity. Given

two sets of concrete conditions of irregularity {C1
i }i∈I and {C2

i }i∈J ,37 we’ll say that

{C1
i }i∈I is more complete than {C2

i }i∈J if for every abstract condition of irregularity

A, if there is some concrete condition C2
k from the latter collection such that

C2
k(X)⇒ A(X)

for all X ∈ 2ω, there is some concrete condition C1
` from the former collection such

that

C1
` (X)⇒ A(X).

From this it follows that Ville’s collection of conditions of irregularity, given in terms

of martingales, is more complete than the collection of conditions of irregularity given

in terms of von Mises’ place selections. On von Mises approach, “we obtain concrete

criteria, but the irregularity is not defined in a manner as complete as possible”,

given that there are sets of measure zero that we cannot show to have measure

zero by means of place selections (namely, the collection of sequences that fail to

satisfy the Law of the Iterated Logarithm). However, defining irregularity in terms

37Here I and J are index sets that need not be countable.
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of martingales provides a more complete solution, as “the criteria of irregularity using

the notion of martingale have both a concrete sense and do not give rise to the gap

that we have indicated” ([Vil39], p. 138).38

In fact, given the correspondence between martingales and null sets established

by Ville, the conditions of irregularity given by martingales are the most complete,

since for every abstract condition of irregularity (i.e. set of measure zero), there is

a concrete condition of irregularity, defined in terms of a martingale, that implies

it. Nonetheless, this completeness does n’t imply the attainment of the exemplary

ideal. As Ville puts it,

It can be naturally possible to find criteria of irregularity that have an-
other expression; but the practical solution, which should give criteria
having an intuitive sense, can never go beyond the abstract solution:
there is a limitation that is due to the nature of the problem ([Vil39], p.
138).39

This view, that it is due to the nature of the problem of irregularity that no

intuitive definition of irregularity (and thus no definition of randomness) can attain

the exemplary ideal, did not prevent others from seeking an intuitive definition of

randomness that could attain the ideal. In particular, the view was neither shared

by Per Martin-Löf nor C.P. Schnorr, who each produced definitions of randomness

38In the original French, “[L]es critères d’irrégularité utilisant la notion de martingale ont à la
fois un sens concret et ne donnent pas lieu à la lacune que nous venons de signaler.”

39In the original French,

Il peut être naturellement possible de trouver des critères d’irrégularités ayant une autre
expression; mais la solution pratique, qui doit donner des critères ayant un sens intuitif,
ne peut jamais aller plus loin que la solution abstraite: il y a là une limitation qui tient
à la nature du probeème.
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that they took to attain some version of the exemplary ideal (at least initially, in the

case of Martin-Löf).

9.5 Martin-Löf’s Definition of Randomness

In 1966, Per Martin-Löf published the paper “The Definition of Random Se-

quences”, which contained a definition of algorithmic randomness for infinite se-

quences with the remarkable property of extending Church’s definition of random-

ness while at the same time avoiding the problem posed by Ville’s Theorem, as every

sequence random according to Martin-Löf’s definition satisfies the Law of the It-

erated Logarithm. Thus for the first time after the publication of Ville’s Étude, a

legitimate contender for a definition of randomness satisfying the exemplary ideal

of completeness was put forward: “Finally, the [collectives] introduced by von Mises

obtain a definition which seems to satisfy all intuitive requirements” ([ML66], p.

602). However, this remark raises two questions that we will have to address here:

What did Martin-Löf understand these intuitive requirements to be, and why did he

think that his definition satisfied them?

A partial answer to this question is provided by Martin-Löf’s discussion of the

definition of randomness for finite strings developed by A.A. Kolmogorov, his dis-

sertation supervisor. In fact, Martin-Löf intended his own definition for infinite

sequences to be an extension of the definition given by Kolmogorov. Let us briefly

review this definition.
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9.5.1 Kolmogorov’s Definition of Random Finite Strings

The main intuition behind Kolmogorov’s definition of randomness for finite strings

is that intuitively, an object such as a sufficiently long finite binary string or an in-

finite binary sequence is judged to be random if it contains no discernible pattern.40

This phrase “judged to be random” is typically taken to mean something like “judged

to be of random origin”, for instance by being produced by the tosses of a fair coin.

For example, the string

11111111111111111111111111111111111111111111111111 (9.5)

will be judged by any competent thinker to be non-random, insofar as it is highly

unlikely that this string was produced by the tosses of a fair coin. But one might

object that for any string of the same length as the above string (9.5) (50 bits, to

be precise), the probability of producing that string is the same, namely 2−50. But

there is an important difference between the string (9.5) and the other 250−1 binary

strings of length 50: (9.5) is the only binary string of length 50 that contains no 0s,

and thus it is highly improbable that we obtain a string that contains no 0s by the

tosses of a fair coin. In fact, it is already quite probable (about a 66% chance) that a

binary string of length 50 produced by the tosses of a fair coin will contain between

22 and 28 0s. However, the string

01010101010101010101010101010101010101010101010101 (9.6)

40For the moment, I am being deliberately vague about what I mean by a ‘discernible pattern’,
but I’ll be more specific about this shortly.
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certainly satisfies the property of having between 22 and 28 0s. Nonetheless, it is

highly unlikely that (9.6) has been produced by the tosses of a fair coin (since the

vast majority strings of length 50 contain the substrings 00 and 11), and thus we

judge (9.6) to be non-random.

We can continue to consider more and more strings of length 50, ruling them

out as non-random on the basis of some property or other, but it would be nice to

have some fixed collection of properties P , which we might consider as the collection

of detectable patterns, so that for any string of length 50 (or any sufficiently long

string, for that matter) that has a property in P , we are justified in concluding that

it is non-random.

Kolmogorov’s insight is that any string τ instantiating such a detectable pattern

will thereby be compressible: there is some Turing machine M and another string σ

such that M(σ) = τ and |σ| < |τ |. Thus, we might call a string τ (M, c)-random if

for every σ such that M(σ) = τ , we have |σ| ≥ |τ | − c; in other words, a finite string

is random if it cannot be compressed very much.

More precisely, we define

CM(τ) = min{|σ| : M(σ) = τ}

to be the plain Kolmogorov complexity of τ relative to the machine M . However, if

we fix a universal Turing machine U , we have for every Turing machine M there is

a constant dM such that

CU(σ) ≤ CM(σ) + dM

257



for every finite string σ, and thus we can define

C(σ) := CU(σ)

for every σ (as changing the choice of universal machine only changes the values

given by the associated complexity measure by at most an additive constant).

With this definition of complexity, we can now define what it means for a string

to be random. As noted above, random strings should not be compressible, and so

the formal analogue of this is to require the Kolmogorov complexity of a random

string to be not much lower than the length of the string itself. Thus, we say that

σ ∈ 2<ω is c-incompressible if

C(σ) ≥ |σ| − c.

Of course, c-incompressibility only provides a reasonable notion of randomness for

strings that are sufficiently long.

Before we return to Martin-Löf’s contribution, there is a conditional variant of

Kolmogorov complexity that bears mentioning. On the conditional approach, the

Turing machines in the definition now take two strings as input, M(σ, ρ). Again,

fixing a Turing machine U that is universal for this collection of machines, we define

CU(τ |ρ) = min{|σ| : U(σ, ρ) = τ},

the idea being that this measures the amount of algorithmic information that ρ has

about τ . Lastly, as above, we can define a string σ ∈ 2<ω to be c-incompressible
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relative to ρ ∈ 2<ω if

CU(σ|ρ) ≥ |σ| − c.41,42

9.5.2 Martin-Löf on Kolmogorov’s Definition

As mentioned above, Martin-Löf intended to provide a definition of randomness

for infinite sequences extending Kolmogorov’s definition for finite strings. Martin-Löf

certainly held this definition in high esteem, as evidenced by statements such as the

following two:

Kolmogorov has proposed a definition of randomness for which strong
arguments can be given that it is coextensive with our corresponding
intuitive concept ([ML69a], p. 265).

The thesis has been put forward by Kolmogorov that this provides an
adequate formalization of our intuitive notion of randomness ([ML66],
pp. 603-604).

Martin-Löf further supports these claims by proving, in his words, “that the random

elements as defined by Kolmogorov possess all conceivable statistical properties of

randomness” ([ML66], p. 602). Martin-Löf is particularly bold in referring here to

“all conceivable statistical properties” rather than, say, “all statistical properties” or

41There are many questions that one can raise concerning Kolmogorov’s definition, the notion
of algorithmic information, problems concerning the choice of universal machine in terms of which
we define Kolmogorov complexity, etc., but there is no space to even begin to raise these questions
here.

42For more information on Kolmogorov complexity, see, for instance, Kolmogorov’s original
paper on his measure of complexity, “Three Approaches to the Definition of the Notion of Amount
of Information” [Kol65], or Li and Vitanyi’s textbook, An Introduction to Kolmogorov Complexity
and Its Applications [LV97].
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“all perceivable statistical properties” is somewhat surprising, but Martin-Löf does

have some reason for this stronger claim, which we will discuss shortly. The key

point is that in Martin-Löf’s view, the exemplary ideal can be attained, at least by a

definition of random finite strings. Later, he adds, “In order to justify the proposed

definition of randomness [that is, Kolmogorov’s definition] we have to show that the

sequences, which are random in the stated sense, possess the various properties of

stochasticity with which we are acquainted in the theory of probability” ([ML66], p.

604).

To prove that Kolmogorov’s definition attains the exemplary ideal, Martin-Löf

offers a statistical definition of randomness for finite strings. To motivate this statis-

tical definition of randomness, Martin-Löf directs his reader to consider the statistical

test that tests for the hypothesis that a given string has a relative frequencies of 1s

that is sufficiently close to 1/2. In implementing such a test, we reject the hypothesis

that the string is of random origin when the relative frequency of 1s is sufficiently

far from 1
2
. But how far is sufficiently far?

Martin-Löf answers this question by appealing to levels of significance. In stan-

dard statistical testing, given a null hypothesis H0 (such as “the string σ is of random

origin”), we reject the hypothesis at a significance level α ∈ (0, 1) if the probability

of rejecting a true null hypothesis is at most α.43 To reflect this aspect of statistical

practice Martin-Löf considers levels of significance ε = 1
2,

1
4
, 1

8
, · · · , stipulates that the

null hypothesis, that the string ξ1ξ2 . . . ξk is random, is to be rejected at level ε = 2−m

43The rejection of a true null hypothesis is referred to as a type I error.
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if

|2sn − n| > f(m,n), (9.7)

where sn =
∑n

i=1 ξi and f(m,n) is the least value such that the inequality (9.7) holds

for no more than 2n−m strings of length n. That is, we reject the null hypothesis at

level ε = 2−m on the basis of the condition (9.7), which holds for 1
2m

th of all strings

of length n.

In the more general setting, Martin-Löf considers sequential tests, which are

“prescriptions” such that, given a level of significance ε, specifies a collection of

strings for which we should reject the null hypothesis. This collection of strings is

referred to as a critical region for the significance level ε. More precisely, a sequential

test is a set U ⊆ ω × 2<ω such that

(i) Un := {σ : (n, σ) ∈ U} is the critical region for the significance level ε = 2−n;

(ii) |Um ∩ 2n| ≤ 2n−m; and

(iii) Un ⊇ Un+1 for every n ∈ ω.

Moreover, this prescription needs to be given effectively, which amounts to requiring

that U be a computably enumerable set of pairs (n, σ). Of this last requirement,

Martin-Löf writes, “This is the weakest requirement we can imagine, and, in fact, all

the tests of use in statistical practice are even of a much simpler type.” ([ML66], p.

605) Already, we see Martin-Löf assert the strength of his definition: any test that

we might employ in statistical practice is included among the sequential tests.
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Martin-Löf proves something even stronger: there is one single test U , such that

for every other sequential test V , there is some constant c such that

Vm+c ⊆ Um.

That is, U is universal for all computably enumerable sequential tests.

Given this definition of an effective sequential test for finite strings, two questions

naturally arise: How can this notion be used to produce a definition of randomness

for finite strings? And given such a definition of randomness, what relation does it

have to Kolmogorov’s definition?

To answer the first question, we need to consider the notion of a critical level of

a string σ, which is the greatest m such that σ ∈ Um, i.e. it is the greatest index

of a critical region containing σ, or, as Martin-Löf puts it, “the smallest level of

significance on which the hypothesis is rejected.” ([ML66], p. 606) Thus we define

mU(σ) = max{m : σ ∈ Um}.44

By setting U0 = 2<ω, it follows that 0 ≤ mU(σ) ≤ |σ|. This suggests that the higher

the critical level of a string, the more random it is. That is, we only reject the null

hypothesis at a very small level of significance.

This measure mU(σ) of the level of significance of a string with respect to the

test U also allows us to answer the second question, concerning the relationship of

44Strictly speaking, the critical level not the significance level 2−m, but rather the value m. To
be precise, we can define the critical level to be the significance level, and then just define the
function m to be minus the logarithm of the critical level.
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this definition of randomness with Kolmogorov’s, for Martin-Löf proves:

Theorem. There is some constant c such that for each n and each x ∈ 2<ω of length

n,

|(n− C(x|n))−mU(x)| ≤ c

Here’s how we should understand this result: on Kolmogorov’s conditional definition

of randomness, a string that is non-random will be such that C(x|n) ≤ n − c for

some c ∈ ω. What Martin-Löf shows is that the universal test U is such that the

level at which we reject the hypothesis of randomness is within a constant of the

amount that a string can be compressed. That is, for each compressible string, we

reject the hypothesis of randomness at a critical level that is determined, within a

constant, by the amount the string can be compressed.

Of course, the constant in question depends on our choice of the asymptotically

optimal machine, as well as our choice of universal test, but we shouldn’t be surprised

by this; in the context of finite strings, it appears that we can do no better than es-

tablishing results up to an additive constant. Nonetheless, this result is an important

one, for it shows a connection between the compressibility of a string and its hav-

ing certain statistical regularities. Furthermore, this result shows why Martin-Löf

holds that strings random according to Kolmogorov’s definition “possess all con-

ceivable statistical properties of randomness”: as long as each conceivable property

for randomness can be tested for by some computably enumerable statistical test,

Martin-Löf’s claim follows.45

45Of course, one might reply to Martin-Löf that there are conceivable properties of randomness
that cannot be tested for by any computably enumerable statistical test. But as long as one holds
that a conceivable property of randomness is one that can be tested by a statistical test that is
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9.5.3 The Definition of Martin-Löf Randomness

Next Martin-Löf shows how one can extend his definition of randomness for finite

strings to one for infinite sequences.46 In order to motivate this definition, he writes,

Imagine a random device, such as the tossing of a coin, capable of deliv-
ering a potentially infinite binary sequences ξ1ξ2 · · · ξn · · · . To conform
with our intuitive conception of randomness, such a sequence has to sat-
isfy for example the law of large numbers [. . . ], or, requiring more, the
law of the iterated logarithm ([ML66], p. 609).

There are several remarks to make about this passage. First, Martin-Löf motivates

his definition by considering the properties that are typically held by sequences gen-

erated at random. This clearly hearkens back to Ville’s desire for a definition of

random sequence given in terms of the properties typically held by sequences chosen

at random.47 Second, it is noteworthy that the so-called “intuitive conception of

randomness” has now apparently assimilated both the Law of Large Numbers (von

humanly implementable, then this reply is not a very forceful one.

46Martin-Löf’s transition from the discussion of random finite strings to random infinite strings
is remarkable, given both the modesty in how he characterizes his work on random finite strings
and the recognition that his definition of random infinite sequences answers a long standing open
question:

In the case of finite binary sequences the introduction of the universal test led to
nothing but a useful reformulation of what could have been established by means
of the complexity measure of Kolmogorov. We shall now see that by defining in
a similar way a universal sequential test we obtain a natural definition of infinite
random sequences. Such a definition has so far not been obtained by other methods
([ML66], p. 608).

47It is reasonable to ask whether there is any significant different between generating a sequence
at random and choosing a sequence at random. This depends on what we take to be the methods of
sequence generation and the methods of sequence selection. Although there may be some interesting
cases in which the properties typical of randomly generated sequences differ from the properties
typical of randomly selected sequences, for our purposes, consideration of these cases would detract
from the present discussion.
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Mises’ first axiom of collectives) and the Law of the Iterated Logarithm. But are

we to understand the satisfaction of these properties as the “intuitive requirements”

satisfied by Martin-Löf’s definition?

This is not altogether clear. For Martin-Löf writes,

Wald did away with all purely mathematical objections against von Mises’
[collectives]. The only doubt there could remain was whether the precisely
delimited mathematical concept constitutes an adequate idealization of
our intuitive notion of a random sequence. Have we the right to assert
that the [collectives] possess in some sense all possible properties of ran-
domness? ([ML69b], p. 30)

Martin-Löf thus appears to hold that a definition of randomness satisfies all intuitive

requirements, yielding an “adequate idealization of our intuitive notion of a random

sequence”, if and only if it counts as random those sequences that “possess in some

sense all possible properties of randomness”.

But an unclarity still persists: In what sense do sequences that are random ac-

cording to an exemplarily complete definition possess all possible properties of ran-

domness? To answer this question, Martin-Löf extends his definition of a sequential

test for finite strings to a definition of sequential test for infinite sequences.

The idea is familiar: We begin with a uniform collection U of sets of finite strings,

but “in the spirit of constructive analysis”, we can think of these strings as defining

a constructive open set in 2ω, where an open set U ⊆ 2ω is constructively open if the

collection of strings σ such that JσK ⊆ U is a computably enumerable set.48

48Recall that JσK = {X ∈ 2ω : σ ≺ X}.
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Next, Martin-Löf defines a constructive null set (or Martin-Löf test) to be a

set A ⊆ 2ω such that A ⊆ Ui for every Ui in a constructive sequence U1,U2 . . .

of constructively open sets with the property that λ(Ui), the Lebesgue measure of

Ui, constructively approaches 0 as i approaches infinity. That is, there is some

computable function f : ω → ω such that λ(Um) ≤ 2−k for all m ≥ f(k). With a bit

of work, one can show that this requirement is equivalent49 to the requirement that

λ(Uk) ≤ 2−k for every k.50

With this definition of a constructive null set, Martin-Löf then defines a sequence

X to be random (henceforth Martin-Löf random) if and only if for every construc-

tive null set{Ui}i∈ω, X /∈ ⋂i∈ω Ui. Given that there are constructive null sets that

contain every sequence that fails to satisfy the Law of Large Numbers or the Law

of the Iterated Logarithm, it follows that every Martin-Löf sequence satisfies these

properties.

More generally, as with the definition of a sequential test for finite strings, Martin-

Löf claims that his notion of a test for infinite sequences is so general that “[a]ny

sequential test of present or future use in statistics is given by an explicit prescription,

which, for every level of significance ε = 1
2
, 1

4
, · · · , tells us for what sequences the

hypothesis is to be rejected” ([ML66], p. 609). Thus, Martin-Löf appears to hold

that a property P is a “possible property of randomness” if and only if there is some

computably enumerable statistical test T such that for all sequences X,

49These requirements are equivalent in the sense that both definitions yield the same class of
constructive null sets.

50As with the definition of a Martin-Löf test for finite strings, Martin-Löf also proves the existence
of a universal test of randomness for infinite sequences.
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X passes T if and only if X has P .

Martin-Löf’s approach bypasses the problem of enumerating natural language de-

scriptions of the properties of randomness by giving merely a syntactical characteri-

zation: any property that is satisfied by all and only those sequences passing a given

c.e. sequential test can be defined by a certain Σ0
2 predicate.51 Hence, if Martin-Löf is

right in holding that the possible properties of randomness, those properties typical

of sequences generated at random, are to be identified with those properties that are

testable via c.e. sequential tests, it follows that his definition attains the exemplary

ideal.52

51That is, given a Martin-Löf test {Ui}i∈ω, there is a Σ0
2 predicate Φ such that

Φ(X) if and only if X /∈
⋂
i∈ω
Ui.

52Incidentally, Martin-Löf was not able to prove that his definition of randomness for infinite
sequences could be formulated in terms of Kolmogorov complexity. While he was able to show that
for X ∈ 2ω, if there is some c ∈ ω such that

(∃∞n)C(X�n) ≥ n− c (9.8)

then X is Martin-Löf random, he could not prove that the converse holds. Moreover, he showed
that the set of sequences satisfying

(∃c)(∀n)C(X�n) ≥ n− c

is empty. See [ML71] for the details. Several years later, Schnorr and Levin showed independently
that a necessary and sufficient condition for Martin-Löf randomness is given by

(∃c)(∀n)K(X�n) ≥ n− c,

where K is a modification of Kolmogorov complexity known as prefix-free complexity (discussed in
Section 10.3.1), thus vindicating Martin-Löf’s attempt to extend Kolmogorov’s definition. Interest-
ingly, it was only in the last decade that the condition 9.8 is necessary and sufficient for a sequence
to be Martin-Löf random relative to the halting set, which means roughly that such sequences pass
all statistical tests that come equipped with the halting set as an oracle.
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9.6 Schnorr’s Alternative Definition

Why should we identify the possible properties of randomness with those prop-

erties testable by a c.e. statistical test? This question was raised by Schnorr, who

argued that these possible properties of randomness should not be identified with

those properties testable by the Martin-Löf tests, but rather a proper subclass of the

collection of these tests. Let us consider Schnorr’s definition of randomness.

9.6.1 The Rationale for Schnorr Randomness

At face value, there isn’t much of a difference between Martin-Löf’s definition of

randomness and Schnorr’s definition. If we take a Martin-Löf test to be a computable

sequence {Ui}i∈ω of effectively open subsets of 2ω such that λ(Ui) ≤ 2−i for every

i ∈ ω, then the definition of a Schnorr test is nearly identical: A Schnorr test is

simply a Martin-Löf test {Ui}i∈ω such that λ(Ui) = 2−i for every i ∈ ω. Then a

sequence is Schnorr random if and only if it is not contained in any Schnorr test.

Could such a slight modification possibly make a difference?

One immediate difference is that the collection of Martin-Löf random sequences is

not coextensive with the collection of Schnorr random sequences: while every Martin-

Löf random sequence is Schnorr random (since every Schnorr test is a Martin-Löf

test), Schnorr proved that the converse does not hold. But according to Schnorr,

there is a further significant difference between these two types of tests. As he writes,

The deficiency residing in the previous concepts of randomness [Martin-
Löf randomness and several other definitions] is, in our opinion, that
properties of random sequences are postulated which are of no signifi-
cance to statistics. Many insufficient approaches have been made until
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a definition of random sequences was proposed by Martin-Löf which for
the first time included all standard statistical properties of randomness.
However, the inverse postulate now seems to have been violated ([Sch71],
p. 255).

Here Schnorr acknowledges that the collection of Martin-Löf tests accounts for every

property that one would encounter in actual statistical practice, just as Martin-Löf

claimed when he first offered his definition. Yet, in Schnorr’s view, the Martin-Löf

tests include too many tests; “all standard statistical properties of randomness” are

guaranteed to hold of Martin-Löf random sequences, but also certain properties that

“are of no significance to statistics.” Which properties are these? Schnorr continues,

The acceptable definition of random sequences cannot be any formula-
tion of recursive function theory which contains all relevant statistical
properties of randomness, but it has to be precisely a characterization of
all those properties of randomness that have a physical meaning. These
are intuitively those properties that can be established by statistical ex-
perience. This means that a sequence fails to be random in this sense
if and only if there is an effective process in which this failure becomes
evident. On the other hand, it is clear that if there is no effective pro-
cess in which the failure of the sequence to be random appears, then
the sequence behaves like a random sequence ([Sch71], p. 255, emphasis
mine).

Thus, Schnorr “the acceptable definition of random sequences” must require that

random sequences satisfy all and only the physically meaningful properties. But

what counts as a physically meaningful property? In Schnorr’s view, a property P

is physically meaningful only if there is an effective procedure such that, for every

sequence X, if X does not satisfy P , the effective procedure indicates that X does

not satisfy P . Let us call such a property effectively detectable.53

53Strictly speaking, it’s not the property, but rather its absence, that is effectively detectable.
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For instance, thinking of a martingale d as a test for randomness (as Schnorr

does), so that a sequence fails the test if d succeeds on it, Schnorr writes, “[I]f the

sequence d(X�n) increases so slowly that no one working with effective methods

only would observe its growth, then the sequence X behaves as if it withstands the

test F” ([Sch71], p. 256). That is, even if it fails the test, and thus should be

counted as non-random, unless this failure can be effectively detected, this sequence

is indistinguishable from a “truly” random sequence, i.e., one that does not fail any

such test.

9.6.2 An Alternative Formulation of the Exemplary Ideal?

Recall that Church offered a version of von Mises’ definition, restricting the col-

lection of place selections to the computable place selections. Moreover, Church

suggested that his definition need not produce a theory of probability attaining the

resolutory ideal of completeness as understood by von Mises, solving all problems of

the probability calculus. For while there are many problems that cannot be solved by

means of computable place selections, Church was doubtful whether such problems

ever arise in actual practice. Thus, only a restricted version of the resolutory ideal

should be attained, and Church at least suspected that the theory of probability

given by the computable place selections could attain this ideal.

We now find ourselves in a similar situation with Schnorr’s criticism of Martin-

Löf’s definition. Schnorr acknowledges that although Martin-Löf random sequences

satisfy “all standard statistical properties of randomness”, but these sequences are

required to satisfy too many properties, many of which do not arise in actual statisti-
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cal practice. The remedy, then, is to restrict to those properties the failure of which

can be effectively determined. Corresponding to this restriction, one might formulate

a restricted version of the exemplary ideal: A definition of randomness attains the

restricted exemplary ideal if and only if it satisfies all effectively detectable proper-

ties that are typical of sequences generated at random, i.e. it satisfies all effectively

detectable R-properties.

Schnorr, in fact, held that his definition attained this restricted exemplary ideal,

referring to Schnorr randomness as “the true concept of randomness” ([Sch71], p.

216). In fact, Schnorr explicitly asserts:

THESIS [. . . ]: A sequence behaves within all effective procedures like a
p-random sequence iff it is Schnorr p-random ([Sch77], p. 198).54

Thus, surprisingly, before the explicit formulation of the Martin-Löf-Chaitin Thesis,

Schnorr formulated his own thesis, which I will henceforth refer to as Schnorr’s Thesis

(which I’ll abbreviate as ST).

9.6.3 Martin-Löf’s Response to Schnorr’s Objection?

Was Martin-Löf moved by Schnorr’s objection? Although Martin-Löf doesn’t

explicitly address Schnorr’s objections in print, one indication that he wasn’t con-

vinced by Schnorr’s objection is that in 1970, he published an alternative definition

of randomness which is even stronger than Martin-Löf randomness. He writes,

54Here p is some computable probability measure, as Schnorr is considering randomness with
respect to various measures. In this study, we restrict our attention primarily to randomness with
respect to the Lebesgue measure, although I briefly discuss randomness for different measures in
Chapter 12.
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The practice in probability theory is the following. As soon as we have
proved that a certain property, such as the law of large numbers [. . . ]
or the law of the iterated logarithm [. . . ] has probability one, we say
that this is a property of randomness. However, if we try, within the
classical mathematical framework, to define a sequence to be random if
it possesses all properties of randomness, we are led to a vacuous notion
([ML70], p. 74).

Martin-Löf’s response here is not to define the properties of randomness in terms of

c.e. statistical tests, but in terms of hyperarithmetical tests. He writes,

It is proposed to avoid this paradox, born of the classical conception of
the totality of all sets of probability one, by restricting our attention
to hyperarithmetical sets or, equivalently, to properties expressible in
the constructive infinitary propositional calculus. This may be regarded
as a constructive version of the restriction to Borel sets which is usually
accepted in probability theory. Actually, the specific Borel sets considered
there are always obtained by applying the Borelian operations to recursive
sequences of previously defined sets, which means precisely that they are
hyperarithmetical ([ML70], p. 74).

To pursue the details of this definition would take us far from the task at hand, but

the point worth making is that Martin-Löf was not ultimately content with his claim

that his definition attained the exemplary ideal. Contra Schnorr, random sequences

must satisfy even more conditions than those enforced by Martin-Löf tests, not fewer.

9.7 Summing Up

There are a few important points to take away from this discussion, as we move

to the task of evaluating the MLCT and related theses. As we’ve seen, the exemplary

ideal is a problematic ideal of completeness for definitions of randomness, for several

reasons. First, there is no clear identification of the R-properties that are to be sat-
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isfied by a sequence that is random according to an exemplarily complete definition.

Yet without an identification of the R-properties, we have no way to evaluate the

claim that a given definition attains the exemplary ideal.

A second problem is that, in our discussion of the exemplary ideal, there is a

notable lack of any talk of why we might want an exemplarily complete definition in

the first place. That is, neither Ville, Martin-Löf, nor Schnorr tell us what we really

gain by identifying an exemplarily complete definition. Although in the accounts

of Ville, Martin-Löf, and Schnorr, reference is made to “statistically meaningful

properties” and the practice of statistics and probability theory, but it is far from

clear what role an exemplarily complete definition of randomness would play in

those disciplines. One begins to wonder: Is this merely idealization for the sake of

idealization? This is an important question to keep in mind as we turn towards

understanding and evaluating the MLCT.
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CHAPTER 10

THE STATUS OF THE MARTIN-LÖF-CHAITIN THESIS

10.1 Introduction

Martin-Löf’s claim that his definition of randomness for infinite sequences “ap-

pears to satisfy all intuitive requirements”, which we encountered in the latter half of

the previous chapter, has been repeated a number of times in the years following the

publication of his paper “The Definition of Random Sequences”. In particular, some

have held that in Martin-Löf randomness, we find a definition that captures what

Martin-Löf referred to as the “intuitive conception of randomness”, just as the formal

definition of a computable number-theoretic function is held to capture the intuitive

conception of an effectively calculable number-theoretic function. This statement,

introduced in Chapter 7 as the Martin-Löf-Chaitin Thesis, can be expressed concisely

as

MLCT: An infinite binary sequence is Martin-Löf random if and only if it is

intuitively random.

My goal in this chapter is to inquire into the status of the MLCT. In particular, I

want to focus my attention on the claim that Martin-Löf randomness can serve as
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the basis of a conceptual analysis of the notion of randomness, thereby filling the

conceptual-analytic role.

Given that extensional adequacy is a necessary condition for a successful concep-

tual analysis, Martin-Löf randomness successfully fills the conceptual-analytic role

only if the MLCT is true. But what reasons are there for accepting the MLCT? More-

over, are there any good reasons for rejecting it? To answer these questions, I survey

and evaluate the main arguments that have been given support of the MLCT, as well

as the arguments given against it, many of which have been offered by those who

hold that some alternative definition of randomness captures the so-called intuitive

conception of randomness.

There are two primary reasons for carefully attending to the details concerning

the status of the MLCT. First, a systematic treatment of the various arguments

given for and against the MLCT has not been provided in the philosophical literature

on algorithmic randomness, and so the catalogue I provide here fills an important

void. Second, the issues that face the advocate of the MLCT, the MLR-advocate, are

the same issues that face the advocate of the claim that definition D captures the

so-called intuitive conception of randomness (to whom I have been referring as the

D-advocate), where D is any currently available definition of randomness. Further,

these issues will feature prominently in my discussion of the Justificatory Challenge

that the D-advocate must meet, as laid out in the next chapter.

The rest of the chapter will proceed as follows. In Section 10.2, I carry out some

initial ground-clearing by making several clarificatory remarks, which in turn will fa-

cilitate our discussion of the MLCT. Next, in Section 10.3, I lay out the key pieces of
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evidence that have been offered in support of the MLCT, namely a number of conver-

gence results, theorems that show that two intensionally non-equivalent definitions of

randomness are nonetheless extensionally equivalent. As there is good reason to hold

that these convergence results alone do not suffice to establish the MLCT, I suggest

several ways that the MLR-advocate might supplement these convergence results. In

the course of discussing severals ways of supplementing these convergence results, we

will begin to see the challenge facing the MLR-advocate to carry our this justificatory

task. In Sections 10.4 and 10.5, I discuss the challenge posed to the MLCT by two

alternative definitions of randomness, Schnorr randomness and weak 2-randomness,

and I further discuss how the MLR-advocate might respond to this challenge. Lastly,

in Section 10.6, in anticipation of my discussion of the Justificatory Challenge, I close

with some general reflections.

10.2 Some Clarificatory Remarks

Before I outline the evidence given in support of the MLCT and discuss the

challenge that other definitions of algorithmic randomness pose to the MLCT, several

clarificatory remarks are in order.

10.2.1 The So-Called Intuitive Conception of Randomness?

Our first order of business is to clarify what is meant by the phrase “the intuitive

conception of randomness”, which regularly appears in the literature on algorithmic

randomness. The most immediate concern one might have with this phrase is the

definite article: why think there is just one intuitive conception of randomness and
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not many? For if we hold that a conception of randomness serves as the basis

of our judgments of randomness, and that an intuitive conception of randomness

is an informal, pre-theoretic collection of beliefs on the basis of which one makes

judgments of randomness, then there seems to me to be no reason to restrict to one

single conception as the intuitive conception.

Nonetheless, as it is not unreasonable to hold that there are widely held beliefs

about the notion of randomness that serve as the basis for many common attributions

of randomness, I will hereafter refer to this collection of beliefs as “the prevailing intu-

itive conception of randomness” or to “our commonly-held intuitions of randomness”.

However, I don’t want to commit to there even being a unique prevailing intuitive

conception of randomness, nor do I want to commit to the claim that commonly-held

intuitions about randomness should have the final say in determining the adequacy of

our definitions of randomness. Still, for dialectical purposes, let us assume that “the

prevailing intuitive conception of randomness” is not an empty expression, and that

this conception serves as a constraint in the task of evaluating the various definitions

of randomness.

10.2.2 “Capturing” the Prevailing Intuitive Conception of Randomness?

Next, we need to clarify the relation that holds between a formal definition of

randomness and the prevailing intuitive conception of randomness, a relation I’ve

been referring to as the “capturing” relation. From the discussions of the MLCT, one

can gather that a minimum, a definition D of randomness captures the prevailing

intuitive conception of randomness only if the extension of the definition D is equal
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to the extension of the prevailing intuitive conception. For our purposes, we can take

this to be necessary and sufficient for the capturing relation to hold between a formal

definition of randomness and the prevailing intuitive conception of randomness.1

But a bit more can be said here. Given that there are multiple non-equivalent

definitions of randomness that are, in a sense, competing for the role of capturing

the prevailing intuitive conception of randomness, it will be useful to precisely define

the “capturing” relation. Taking D(X) to stand for “X is D-random” and IR(X) to

stand for “X is intuitively random” (i.e. X is random according to the prevailing

intuitive conception), let us say that a given definition D of algorithmic randomness

(i) licenses the attribution of intuitive randomness to a sequence X if

D(X)⇒ IR(X);

(ii) licenses the attribution of intuitive non-randomness to a sequence X if

¬D(X)⇒ ¬IR(X); 2

(iii) captures the intuitive notion of randomness if for every X, either D licenses the

attribution of intuitive randomness to X or licenses the attribution of intuitive
1Perhaps one might require additional conditions that also guarantee intensional adequacy of

the correct definition of randomness. However, I think it is reasonable to restrict to the notion
of extensional adequacy at this stage of the game, given that the question as to the extensional
adequacy of various definitions of algorithmic randomness has not received a satisfactory treatment.

2Here I am assuming that a sequence is intuitively non-random if and only if it is not intuitively
random. Some might balk at this assumption, but given that the theses we consider here are true
only if the collection of intuitively random sequences has a definite extension, this assumption is
not inappropriate.
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non-randomness to X, i.e., for every X,

D(X)⇔ IR(X).

Hereafter, I will also refer to a definition that captures the prevailing intuitive notion

of randomness as correct.

With this terminology in mind, let us consider the ways in which a definition

of randomness can fail to capture the prevailing intuitive notion of randomness. In

particular, there are two circumstances in which this failure can occur. First, D may

falsely license the attribution of intuitive non-randomness to some sequence X:

(I) D(X) is false but IR(X) is true.

Second, D may falsely license the attribution of intuitive randomness to some se-

quence X:

(II) D(X) is true but IR(X) is false.

Borrowing standard terminology from statistical practice, let us say of any definition

D for which (I) holds that it is Type I defective and of any definition D for which

(II) holds that it is Type II defective.3

From the claim that a definition D of randomness captures the intuitive concep-

tion of randomness, it follows that all other definitions are either Type I defective or

Type II defective, or both. This observation will be central to my discussion of the

3Note that these two types of defectiveness are analogous to the two main types of errors in
hypothesis testing in statistics: A Type I error is committed when one rejects a given null hypothesis
when it is in fact true, while a Type II error is committed when one fails to reject the null hypothesis
when in fact the alternative hypothesis is true.
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status of the MLCT beginning in the next section. Before we turn to this discussion,

however, there is one further matter of clarification.

10.2.3 Establishing the Defectiveness of a Definition of Randomness

If the D-advocate (i.e., the advocate of the claim that definition D of randomness

captures the intuitive notion of randomness) is going to justify her claim, it appears

that she must show that all definitions of randomness that are not extensionally

equivalent to D are either Type I defective or Type II defective. But how does one

even show that a single definition is Type I defective or Type II defective? Let us

consider these two in reverse order.

10.2.3.1 Type II Defectiveness

The standard approach to showing that a given definition of randomness D is

Type II defective is to identify some property P such that (i) P is satisfied by

a D-random sequence but (ii) no intuitively random sequence has P . I call such a

property a disqualifying property. We will see a number of such properties throughout

the latter half of the chapter, but before we consider these examples, we need to ask:

What makes a property a disqualifying property?

First, the disqualifying properties that we’ll consider shortly all bear a close

connection to what I call hallmarks of randomness. To understand what makes a

property a disqualifying property, we first need to discuss these hallmarks of ran-

domness.

Hallmarks of randomness are properties on the basis of which one attributes
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randomness to a sequence; in general, these are the properties associated with random

phenomena, even in everyday, non-scientific settings. While I don’t intend to provide

a full catalogue of the various hallmarks of randomness, there are four that have been

isolated as significant in the algorithmic randomness literature: statistical typicality,

unpredictability, incompressibility, and independence. The first three hallmarks play

a particularly important role in the general theory of algorithmic randomness, for

one often finds definitions of randomness as falling into one of three paradigms: the

“typicality paradigm”, the “unpredictability paradigm”, and the “incompressibility

paradigm”.4,5

Let us consider each of these four hallmarks in turn.6

◦ Typicality : According to “typicality paradigm” in the algorithmic randomness

literature, an intuitively random sequence is typical if it satisfies all “statistical

properties of randomness”, to use Martin-Löf’s phrase that we discussed at the

end of the previous chapter. Some examples of these statistical properties of

randomness, which should now be quite familiar to us, are the Law of Large

4For example, the opening paragraph of the chapter on Martin-Löf randomness in the recent
Downey/Hirschfeldt volume [DH10] lists these paradigms as “the computational paradigm”, “the
measure-theoretic paradigm”, and “the unpredictability paradigm”. See ([DH10], p. 226) for more
details.

5Unlike the other three hallmarks, there is no “independence paradigm” for definitions of algo-
rithmic randomness, but this not detract from the importance of this hallmark.

6One might worry that the hallmarks as described here are rather loosely characterized. This is
largely by design. For one thing, in the algorithmic randomness literature, not much of substance is
said about these hallmarks, as one usually passes quickly from very broad descriptions of a hallmark
to a formal definitions that is based, in some way, upon that hallmark. Of course, this doesn’t mean
that we shouldn’t try to be more precise in characterizing these hallmarks, and as we will see in
this chapter and the next, these hallmarks can be made more precise. Nonetheless, as crudely as
these hallmarks might be formulated, they are still useful for my purposes.
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Numbers and the Law of the Iterated Logarithm.

◦ Unpredictability : According to the “unpredictability paradigm”, the bits of

an intuitively random sequence should be unpredictable. Here the prediction

need not be absolute; if an effective method correctly predicts the values of a

sequence, say, three-fourths of the time, then the sequence is still counted as

predictable.

◦ Incompressibility : According to the “incompressibility paradigm”, an intu-

itively random sequence should be incompressible, in the sense that its ini-

tial segments cannot be compressed. The common refrain in the algorithmic

randomness literature is that a finite string is incompressible if its shortest de-

scription is not much shorter than the string itself.7

◦ Independence: Lastly, the bits of an intuitively effective random sequence

should be independent of one another. One might think that unpredictability

guarantees a degree of independence: if the (n+1)st value of a sequence cannot

be predicted from the previous n values, then we might say that the (n+ 1)st

value is independent of the previous n values. But one might consider more

7This characterization relies on a very specific account of what counts as a description (and thus
I explicitly avoided the use of the term “description” in explaining Kolmogorov complexity in the
previous chapter). For instance, if one takes the admissible descriptions to be given by computer
programs, then a string σ cannot be compressed if the shortest computer program that outputs σ
is roughly as long as σ.
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general sorts of independence; for instance, one should not be able to use the

even-indexed bits of a random sequence to effectively generate or predict the

odd-indexed bits of that sequence, and vice versa.

So what do these hallmarks of randomness have to do with disqualifying prop-

erties? If we hold that a disqualifying property is a property in virtue of which one

attributes non-randomness to a sequence, then the connection should be clear: A

property in virtue of which a sequence is a statistically atypical, predictable, or com-

pressible is usually counted as a disqualifying property. For instance, a sequence that

does not contain the subword 11 is highly atypical, and thus should not be counted

as intuitively random. Similarly, if every 5th bit of a sequence is a 0, then there is an

effective method of prediction that correctly predicts every 5th bit of the sequence;

again, this sequence would not be counted as intuitively random.

It is not my intention to provide necessary or sufficient conditions for a property

to count as a disqualifying property, for as I discuss in the next chapter, it’s not

clear to me that such a set of conditions can be identified. For now we’ll just con-

sider disqualifying properties on a case-by-case basis, provisionally accepting some

properties as disqualifying properties.

To sum up, the standard way to show that a definition of randomness D is Type

II defective is to establish that some D-random sequence satisfies a disqualifying

property.
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10.2.3.2 Type I Defectiveness

How do we show that a definition of randomness is Type I defective? It is much

less clear how one is to establish that a definition D of randomness is Type I defective.

One suggestion is to take the following approach:

(i) identify some property H that can be instantiated by sequences and is a hall-

mark of randomness;

(ii) show that some sequence X that is not D-random bears H; and

(iii) establish that X bears no disqualifying properties.

But this approach is problematic. Suppose we would like to show that a definition

D is Type I defective, as it fails to count as random a sequence X that is intuitively

random. Thus, we have to carry out the above steps (ii) and (iii) for this sequence

X. But if we are able to dispute with the D-advocate whether X is intuitively

random, then X must be, in some sense accessible to us, where, following a definition

suggested by Borel, a number is accessible if it is possible to define it in such a way

that “any two mathematicians will be certain that they are speaking about one and

the same entity” ([Bag53], p. 407).8 More generally, suppose we are not merely

disagreeing with the D-advocate about a single sequence, but rather some collection

S of sequences. Again, this collection S must be accessible to us, where, extending

Borel’s definition, a collection of sequences is accessible if it is possible to define it in

such a way that any two mathematicians will be certain that they are talking about

8See also [Bor52].
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one and the same collection. In either of these two cases, we face a problem: Why

shouldn’t the property that defines X or the property that defines S be counted

as a disqualifying property? This is a serious question that we must answer if an

argument for the Type I defectiveness of D like the one given above is to succeed.

One alternative approach to arguing for the Type I defectiveness of a given defi-

nition D is to argue that some of the properties that are necessary for D-randomness

are not necessary for intuitive randomness. One example of this approach is provided

by Schnorr, who argued that Martin-Löf’s definition is Type I defective because it

requires random sequences to pass statistical tests that have no “physical meaning”.

I’m not so much interested, at this point of our discussion, in the particulars

of Schnorr’s argument, but rather Schnorr’s argumentative strategy:9 Instead of

arguing about the individual sequences that are Schnorr random but not Martin-Löf

random, Schnorr argues about the properties that are necessary and sufficient for

randomness. That is, Schnorr argues for one collection of properties to be considered

as the properties of randomness (those that can be given in terms of Schnorr tests),

rejecting the collection identified by Martin-Löf (those properties that can be given

in terms of Martin-Löf tests). While this appears to be a more promising approach

than the other approach to demonstrating Type I defectiveness, the downside is

that for this approach to succeed, one must successfully identify the properties of

randomness, which is a rather difficult task, as I argue in the next chapter.

We will revisit the problems that come with establishing that a definition of

randomness is Type I or Type II defective later in this chapter as well as in the next

9However, below in Section 10.4.1, I consider the particulars of Schnorr’s argument.
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chapter. My goal at this point of the discussion is merely to point out that there are

such problems without indicating just how problematic they are. Later, I will argue

that they are deeply problematic, so much so that it is doubtful whether one can

successfully establish that one definition of algorithmic randomness is correct while

all others are defective.

We now turn to the heart of the chapter, in which I lay out and evaluate the

evidence given in support of the MLCT and consider the threat posed to the MLCT

by certain alternative definitions of randomness.

10.3 On the Evidence for the MLCT

The standard argument for the MLCT is that a number of intensionally different

definitions of algorithmic randomness prove to be extensionally equivalent to Martin-

Löf randomness; hereafter I will refer to this argument as the Appeal to Convergence

Results.10 In what follows, I will highlight the convergence results to which the

advocates of the MLCT appeal in support of their view. Next, I will argue that

the Appeal to Convergence Results, taken in isolation, fails to establish Martin-Löf

randomness as the correct definition of randomness. Lastly, in light of this failure,

10It should be noted that other arguments given in support of the MLCT of varying quality
are discussed in Jean-Paul Delahaye’s article “The Martin-Löf-Chaitin Thesis: The Identification
by Recursion Theory of the Mathematical Notion of Random Sequence” [Del11]. In his article,
Delahaye classifies a number of types of arguments that can be given in support of the claim that a
given formal notion is coextensive with a specific informal, pre-theoretic notion and then compares
the strength of two particular instances of each argument-type, the argument-instance in support
of the CTT and one argument-instance in support of the MLCT. Most of the argument-types in
Delahaye’s classification do not give rise to particularly strong argument-instances in favor of the
MLCT, as most establish that Martin-Löf random sequences have some property that is shared by
a number of non-equivalent definitions of randomness, and so we will not consider these argument-
types here.
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I suggest several ways to supplement the appeal to convergence results to establish

the truth of the MLCT, namely by means of a squeezing argument or by what Alan

Turing calls a “direct appeal to intuition”.

10.3.1 Three Convergent Definitions

One widely held view on the justification of the Church-Turing Thesis (henceforth,

the CTT) is that the convergence of multiple formal definitions provides the strongest

evidence in support of the CTT. As evidence of the widespread acceptance of this

view, one merely needs to consult any of the standard textbooks on computability

theory.11 Similarly, some have claimed that multiple definitions of randomness are

equivalent provides a similarly strong justification for the MLCT. Antony Eagle

summarizes this position well, writing,

Different intuitive starting points have generated the same set of random
sequences. This has been taken to be evidence that ML-randomness [. . . ]
is really the intuitive notion of randomness, in much the same way as the
coincidence of Turing machines, Post machines, and recursive functions
was taken to be evidence for Church’s Thesis, the claim that any one
of these notions captures the intuitive notion of effective computability
([Eag10]).

For instance, in their textbook on Kolmogorov complexity, Paul Vitanyi and Ming

Yi write,

The fact that such different effective formalizations of infinite random
sequences turn out to define the same mathematical object constitutes
evidence that our intuitive notion of infinite sequences that are effectively
random coincides with the precise notion of Martin-Löf random infinite
sequences ([LV97], p. 222).

11See, for example, [Rog87], pp. 18-21, [Coo04], pp. 42-43, or [Soa87] p. 14.
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More forcefully, A. Dasgupta writes,

Perhaps the strongest evidence for the Martin-Löf-Chaitin thesis available
so far is Schnorr’s theorem, which establishes the equivalence between a
naturally formulated typicality definition (Martin-Löf randomness) and
a naturally formulated “incompressibility definition” (Kolmgorov-Chaitin
randomness) ([Das11], p. 707).

Let us briefly consider the most well-known of these convergence results.12 There

are three definitions of randomness in particular that are the most widely studied,

each of which is intended to formalize a different hallmark of randomness: typicality,

unpredictability, and incompressibility:

Randomness as typicality: X ∈ 2ω is random1 if and only if for every

Martin-Löf test {Ui}i∈ω, X /∈ ⋂Ui (i.e., X is Martin-Löf random).

Randomness as unpredictability: X is random2 if and only if no com-

putably enumerable martingale succeeds on X.13

Randomness as incompressibility: X is random3 if and only if the initial

segment complexity of X is sufficiently high, i.e.,

(∃c)(∀n)K(X�n) ≥ n− c.14

12The reader interested in the full details of these different definitions of randomness, and proofs
that they are equivalent, should consult Section 2.5.1.

13A martingale d is computably enumerable (c.e. ) if the range values of d are uniformly left-c.e.
real numbers, which means that the left cuts corresponding the to the values d(σ) for every σ ∈ 2<ω

are uniformly c.e. sets of rational numbers. That is, there is some computable function f : 2<ω → ω
such that for each σ ∈ 2<ω, the left cut of d is equal to the c.e. set of rationals, Wf(σ). For more
details, see Section 2.5.1 .

14Here K(σ) is the prefix-free Kolmogorov complexity of σ, defined in terms of a prefix-free
universal Turing machine U , one for which U(σ)↓ and σ ≺ σ′ implies that U(σ′)↑. It is necessary to
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While each of these definitions appears to be well-motivated, as each is given

in terms of a different hallmark of randomness, on the basis of which we make

attributions of randomness in both scientific and non-scientific settings, it is striking

that each of these definitions picks out the same extension of random sequences.

Thus we have, for every X ∈ 2ω,

X is random1 ⇔ X is random2 ⇔ X is random3.15

Recasting each of these definitions of randomness in terms of the hallmarks of ran-

domness they are purported to formalize, we have, for every X ∈ 2ω

X is typical ⇔ X is incompressible ⇔ X is unpredictable.

Thus, three intensionally non-equivalent definitions are extensionally equivalent.

10.3.2 An Initial Worry

Now, these convergence results are interesting and even quite surprising, for they

appear to indicate that the various hallmarks of randomness are more closely related

than we might have otherwise suspected. But how much evidential support do the

use some restricted version of Kolmogorov complexity to extend Kolmogorov’s definition of random
finite string to the infinite case, since the collection of X ∈ 2ω such that

(∃c)(∀n)C(X�n) ≥ n− c

is empty, a result due to Martin-Löf [ML71]. The idea to overcome this obstacle by considering
some restricted class of Turing machines is due independently to Chaitin, Levin, and Schnorr. See
Section 2.5.1 for more details.

15The first equivalence was proved by Schnorr, who gave an effective version of Ville’s proof of
the correspondence between martingales and sets of measure zero, while variants of the second were
proved independently by Schnorr [Sch73] and Levin [Lev73]. See also [Cha75].

289



above convergence results really provide for the MLCT? More generally, how much

evidential support do convergence results provide for a given thesis? Related to this

second question, we might further ask: Does this evidential support come in degrees,

and if so, what determines the degree of support? Is this degree merely determined

the number of intensionally different definitions that are extensionally equivalent, or

does the quality of the convergence results factor into this degree of support in some

way?

Answering these last two questions could potentially help in answering the first

question about the amount of evidential support the convergence results provide for

the MLCT. The semblance of an answer to these questions can be gleaned from the

literature on algorithmic randomness. First, some of those who appeal to conver-

gence results in support of the MLCT appear to hold that there are varying degrees

of evidential support provided by convergence results. Let’s distinguish between two

different, though not incompatible, approaches to measuring the degree of evidential

support of convergence results. According to the quantitative approach to conver-

gence results, the more convergent definitions there are, the more evidence we have

for the associated thesis. An example of this approach is provided by Jean-Paul

Delahaye, who, in comparing the strength of the evidential support of the Appeal to

Convergence Results in support of the CTT with the Appeal to Convergence Results

in support of the MLCT, writes,

Here we have a clear advantage in favour of the Church-Turing Thesis over
the Martin-Löf-Chaitin Thesis for the first one is supported by several
hundred equivalent definitions, meanwhile the second one has only several
equivalent definitions [. . . ] ([Del11], p. 130)
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Next, according to the qualitative approach to convergence results, not all con-

vergence results have the same evidential strength; some lend more evidence to the

relevant thesis than do others. This appears to be the approach Dasgupta takes

when he claims that the Levin-Schnorr theorem (the equivalence of randomness1,

given in terms of typicality, and randomness3, given in terms of incompressibility)

provides “perhaps the strongest evidence for the [MLCT]”. For if all convergence

results have the same evidential strength, then presumably the equivalence of the

“typicality definition” and the “unpredictability definition” should have just as much

evidential support as the Levin-Schnorr Theorem, the equivalence of the “typicality

definition” and the “incompressibility definition”.16

These two approaches to convergence results must be further developed and clar-

ified before we can say with any confidence that the Appeal to Convergence Results

really does provide good evidence for the MLCT, especially in the face of alternative

definitions of randomness. However, there is good reason to doubt that the Appeal

to Convergence Results provides much evidential support for the MLCT in the first

place.

10.3.3 Kreisel’s Concern

The problem of determining the evidential support provided by convergence re-

sults is eclipsed by a more serious concern. In particular, Georg Kreisel raised a

16It is not clear what would account for some convergent results having more evidential strength
than others on this approach. Is the evidential strength of the Levin-Schnorr theorem due to its
being unexpected or surprising? Does a convergence result that is unexpected or surprising offer
more evidential support than one that is neither unexpected nor surprising? If not, what else could
account for the strength of a single convergence result?
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worry that these types of convergence results do not exclude the possibility of sys-

tematic error. We might have a collection of definitions that converge to the wrong

extension. Concerning whether one can generalize the CTT to abstract structures

in higher computability theory, Kreisel writes, “Equivalence results do not play a

special role, simply because one good reason is better than 20 bad ones, which may

be all equivalent because of systematic error” ([Kre71], p. 144). The fact that a

number of formal definitions have the same extension doesn’t guarantee that they

also have the same extension as some notion they are intended to capture. Let’s call

this worry Kreisel’s Concern.

Kreisel’s Concern, then, is that we may have a number of definitions that converge

in extension, but which converge to the wrong extension. How are we to rule out this

possibility? Perhaps the quantitative approach to the Appeal to Convergence Results

might address Kreisel’s Concern. For instance, given that there are hundreds of

definitions of the class of computable number-theoretic functions that are equivalent

to one another, and no serious contenders that are not equivalent to these definitions,

as long as we keep piling on more and more equivalent definitions, the chance of

systematic error gets smaller and smaller.

But this is not a line of argument available to the defender of the MLCT, for just

as there are a number of definitions that converge to the extension of Martin-Löf

randomness, there are also multiple definitions of randomness that converge to the

extension of Schnorr randomness. In fact, one can find definitions of algorithmic

randomness equivalent to Schnorr randomness that are given in terms of the same

three hallmarks of randomness discussed above:
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Randomness as typicality: X ∈ 2ω is random4 if and only if for every

Schnorr test {Ui}i∈ω, X /∈ ⋂Ui (i.e., X is Schnorr random).

Randomness as unpredictability: X ∈ 2ω is random5 if and only if for every

computable martingale d and every unbounded, non-decreasing computable

function h, it is not the case that

d(X�n) ≥ h(n)

for infinitely many n.17

Randomness as incompressibility: X ∈ 2ω is random6 if and only if for

every computable measure machine M ,

(∃c)(∀n)KM(X�n) ≥ n− c,

where a computable measure machine M is a prefix-free machine such that the

Lebesgue measure of the collection of infinite extensions of the strings in the

domain of M is a computable real number.

Thus we have for every X ∈ 2ω,

X is random4 ⇔ X is random5 ⇔ X is random6.18

17A martingale d is computable if if the range values of d are uniformly computable real numbers,
which means that the left cuts corresponding the to the values d(σ) for every σ ∈ 2<ω are uniformly
computable sets of rational numbers.

18The first equivalence was also proved by Schnorr [Sch71]. The second was proven only recently
by Rod Downey and Evan Griffiths in [DG04].
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If the Appeal to Convergence Results provides evidential support to the MLCT, it

also provides evidential support for ST. In fact, Schnorr explicitly presents the Ap-

peal to Convergence Results argument in support of ST, writing, “[An] important

argument for our thsis which proposes [Schnorr randomness] as the ‘really true’ con-

cept of randomness is that some different approaches lead to an equivalent definition”

([Sch71], p. 257). So clearly convergence results alone cannot privilege Martin-Löf

randomness over Schnorr randomness with respect to capturing the prevailing intu-

itive conception of randomness.19

In light of these equivalent definitions that converge to the extension of Schnorr

randomness, the quantitative approach to convergence results isn’t going to get us

very far in deciding between the MLCT and ST.20 Further, given that there is an

analogue of the Levin-Schnorr theorem for Schnorr randomness,21 the qualitative

approach, such as the one Dasgupta takes, is also threatened.22 Thus, in this case,

19There is one qualitative difference between Martin-Löf randomness and Schnorr randomness
that some have held shows Martin-Löf randomness to be the superior definition: while there is a
universal Martin-Löf test, there is no universal Schnorr test. While this existence of a universal
test has certain technical advantages, it’s hard to see why a definition D of randomness should be
disqualified from capturing the prevailing intuitive conception of randomness because these is no
universal test for D-randomness.

20For even if we were to count the number of definitions equivalent to Martin-Löf randomness
and the to Schnorr randomness, how useful would that be? An educated guess is that the numbers
wouldn’t differ by too much.

21Downey and Griffiths showed the equivalence of randomness4 and randomness6 in [DG04].

22In fact, this isn’t the only result showing the equivalence of a definition given in terms of
typicality with a definition in terms of incompressibility. As discussed in footnote 52 in the previous
chapter, X is 2-random, i.e., Martin-Löf random relative to the halting set ∅′, if and only if

(∃c)(∃∞n)C(X�n) ≥ n− c.
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Kreisel’s concern is legitimate: if there can be only one correct definition of random-

ness, then a systematic error is occurring in at least one of these two cases.

10.3.4 Supplementing the Convergence Results

Clearly, then, the convergence results are not enough to help us adjudicate be-

tween MLCT and ST, and in particular, taken in isolation, they certainly don’t show

that MLCT is to be preferred to ST. However, one might hope to settle the issue by

supplementing the convergence results with additional evidence. In what follows, I

will discuss two ways one might carry this out: by offering a squeezing argument, or

by making a “direct appeal to intuition”.

10.3.4.1 Squeezing Arguments

First, one might supplement the convergence results by means of a squeezing

argument.23 The idea of a squeezing argument, as formulated by Kreisel in [Kre72],

is the following: Suppose we have an intuitive notion I , the extension of which we

are trying to capture by some formal definition. If there is

(a) a formal definition D1 such that every object that satisfies D1 also satisfies I ,

and

(b) another formal definition D2 such that every object that satisfies I also satisfies

D2,

23For a particularly helpful discussion of squeezing arguments, see Peter Smith’s recent “Squeez-
ing Arguments” [Smi11].
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it follows that

ext(D1) ⊆ ext(I ) ⊆ ext(D2),

where ext(·) denotes the extension of the given notion. Now if we can show that an

object satisfies D1 if and only if it satisfies D2, we will thereby have shown that

ext(D1) = ext(I ) = ext(D2).

That is, we will have “squeezed” the extension I between the extensions of the defi-

nitions D1 and D2, or to put the matter differently, D1 and D2 will converge “around”

I . If we can thus show that the extension of the intuitively random sequences is

squeezed between the extensions of two coextensive definitions of randomness, on

this approach, we can conclude that we’ve captured the intuitive notion.

Can we use a squeezing argument to establish the MLCT? First recall that

MLR ( SR. This has a significant consequence for our question: Since MLR is

sufficient for SR, if the advocate of MLCT can successfully establish that MLR is not

Type I defective (that is, that MLR is necessary for intuitive randomness), that is,

for every X,

IR(X) ⇒ X ∈ MLR, (10.1)

this would imply that no X ∈ SR \ MLR is intuitively random.24 Thus, if the

MLR-advocate is going to squeeze the extension of the intuitively random sequences

between the extensions of two equivalent definitions of MLR, he will have to establish

24Note, however that if the advocate of MLCT establishes that MLR is not Type II defective
(that is, that MLR is sufficient for intuitive randomness), this would not rule out the possibility
that SR is also sufficient for intuitive randomness.
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(10.1). That is, if a squeezing argument is going establish the MLCT, we need to

determine whether or not the sequences in SR \MLR are intuitively random.

Assuming that the extension of intuitive randomness can be captured by some

formal definition, either

(i) no X ∈ SR \MLR is intuitively random;

(ii) some X ∈ SR \ MLR is intuitively random, but some Y ∈ SR \ MLR is not

intuitively random; or

(iii) every X ∈ SR \MLR is intuitively effectively random.

Clearly, (ii) and (iii) both imply that the MLCT is false, and thus the MLR-advocate

will want to reject (ii) and (iii) while establishing (i) (which I’ll henceforth abbreviate

as (SR \MLR)⇒ ¬IR).

Now, to show that (SR \MLR)⇒ ¬IR, one reasonable strategy is to identify one

or more properties that hold of every X ∈ SR \MLR and argue that this property

is incompatible with the intuitive conception of effective randomness. In Subsection

10.4.2, I’ll discuss some attempts to carry this out. But the main point is this:

Even if we supplement the convergence results with a squeezing argument in order

to establish the MLCT, we still have an additional task to carry out, namely, showing

that (SR \MLR)⇒ ¬IR.

10.3.4.2 A “Direct Appeal to Intuition”

One might also supplement the convergence results by making what Turing refers

to in his famous 1937 paper “On Computable Numbers, with an Application to the
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Entscheidungsproblem” [Tur38] as a “direct appeal to intuition”. That is, one can at-

tempt to sharpen the prevailing intuitive conception of randomness, distilling certain

features that are individually necessary and jointly sufficient for intuitive randomness

and arguing that some formal definition of randomness has each of these features.

This is the approach that Turing takes in arguing that every effectively calcula-

ble number-theoretic function is Turing computable in “On Computable Numbers”.

Specifically, what Turing carries out is an analysis of the defining features of human

computors (i.e. those who compute number-theoretic functions with pencil and pa-

per), features such as (i) being capable of observing only finitely many symbols at

a given time, (ii) having one’s behavior determined entirely by the symbols he is

observing and the state that he is in, (iii) being in one of only a finite number of

possible states, and so on. Having provided this analysis, Turing then argues that

every computation that can be carried out by a computor, i.e. an individual with

the features he has identified, can be carried out by a Turing machine.25

How might one justify the MLCT by a direct appeal to intuition? Following

Turing’s lead, one would have to identify a list of features of the prevailing intuitive

conception of randomness that are individually necessary and jointly sufficient for

intuitive randomness. But even in one were to identify such a list of features, there

would still be work to be do to establish the MLCT. In particular, one would have

to further argue that these features are individually necessary and jointly sufficient

for Martin-Löf randomness. But here’s the rub: it’s hard to see how either of these

25Some have disputed the claim that what Turing carries out is, properly speaking, a conceptual
analysis of the intuitive notion of numerical computability; see, for instance, Michael Rescorla’s
“Church’s Thesis and the Conceptual Analysis of Computability” [Res07].
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steps can be carried out without showing that (SR \MLR)⇒ ¬IR. For if this “direct

appeal to intuition” is going to allow us to establish the MLCT, the list of necessary

and jointly sufficient conditions for intuitive randomness must be incompatible with

the sequences in SR \ MLR. But to provide such a set of conditions for intuitive

randomness that is incompatible with the sequences in SR\MLR is precisely to show

that (SR \MLR)⇒ ¬IR.

The upshot is this: on both of the suggested ways to supplement the convergence

results, in order to establish the MLCT, it appears that one still must establish

(SR \ MLR) ⇒ ¬IR. Can the MLR-advocate carry out this task? More generally,

how much of a threat does Schnorr randomness pose to the MLCT?

10.4 The Challenge of Schnorr Randomness

We’ve already seen that the Appeal to Convergence Results does not establish

the MLCT, given that Schnorr made the Appeal to Convergence Results in support

of ST. As I argued above, the MLR-advocate thus needs to establish the Type II

defectiveness of Schnorr randomness as a necessary step in establishing the MLCT.

Yet from the point of view of the SR-advocate, Martin-Löf randomness is Type I

defective. Does the SR-advocate have any good reason to hold this?

10.4.1 Is Martin-Löf Randomness Type I Defective?

We now turn to the particulars of Schnorr’s argument for the Type I defectiveness

of Martin-Löf randomness. As mentioned above, instead of arguing that there is some

sequence that is (i) Schnorr random, (ii) not Martin-Löf random, but (iii) should be
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counted as intuitively random, Schnorr argued that Martin-Löf randomness is Type

I Defective on the grounds that it is based on an inadequate formalization of the

notion of a statistical test.

Recall that Schnorr acknowledged that Martin-Löf’s definition “included all stan-

dard statistical properties of randomness”. But it also included additional properties,

properties that, in Schnorr’s view, lack “physical meaning” and are of no significance

for statistics. In particular, some Martin-Löf tests are such that there is no effective

procedure that indicates when a given sequence has failed the test. Thus, there are

sequences that fail to pass some Martin-Löf tests, but there is no way to effectively

verify this failure. From Schnorr’s point of view, these sequences should still be

considered as effectively random.

Should the MLR-advocate take the MLCT to be threatened by Schnorr’s argu-

ment? I think not, as there are a number of issues with Schnorr’s argument on

which the MLR-advocate could press Schnorr. First, he might question the extent to

which definitions of randomness should be constrained by actual statistical practice.

Moreover, it’s far from clear that Schnorr’s restricted definition is any more faithful

to statistical practice than Martin-Löf’s definition is. For instance, why think that

effective detectable properties are the only ones that are of significance for statis-

tics?26

26Antony Eagle raises a related point:

In general, one might be worried (for good reason) about Schnorr’s operationalist idea
that a non-random sequence must be one that can be effectively determined to be
non-random: we don’t normally take the existence of good evidence for a property to
be equivalent to the presence of the property ([Eag10]).
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Second, the MLR-advocate might call into question the notion of physical meaning

to which Schnorr appeals, asking, for instance, why it is that a statistical test must

have this extra verifiability condition in order to count as physically meaningful. A

test that lacks an effective method for verifying when a sequence passes the test may

very well fail to be adequate for actual statistical practice, but it doesn’t follow that

the test lacks physical meaning.

Lastly, the MLR-advocate might question whether Schnorr’s definition is any

more physically meaningful than Martin-Löf’s definition, in light of the fact that

both definitions are already highly idealized and detached from everyday statistical

experience (as both involve infinite sequences of events, both involve unbounded

running time for enumerating tests, and so on).

In general, if our goal is to produce a definition that will be of use in actual

statistical practice, then we must determine exactly which conditions must be fulfilled

in order for a definition of randomness to fulfill this purpose. Further, if one of these

conditions is that we must be able to effectively verify that non-random sequences

do not pass various tests for randomness, then, by all means, we should add this as a

constraint. But in the absence of a clear reason for such a requirement, it seems hard

to justify, and Schnorr provides no such reason. At best, then, Schnorr’s argument

is in need of further development.

The MLR-advocate need not merely play defense, rebutting Schnorr’s claim that

MLR is Type I defective; the MLR-advocate also has grounds for holding that Schnorr

randomness is Type II defective. Specifically, there are several putative disqualifying

properties to which the MLR-advocate can appeal in support of the claim that Schnorr
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randomness is Type II defective.

10.4.2 Putative Counterexamples to ST

The standard approach to showing that Schnorr randomness is Type II defective

consists of identifying Schnorr random sequences that are not intuitively random.27

Three such purported counterexamples, along with the standard justification given

to support the claim that these are legitimate counterexamples, are the following:

Putative Disqualifying Property 1: There exists a Schnorr random se-

quence R = R0 ⊕ R1 (where R0 consists of the even indexed bits of R, while

R1 consists of the odd indexed bits) such that R0 is not Schnorr random rel-

ative to R1, and vice versa (in fact, one can use R0 to compute R1, and vice

versa).28 This constitutes a failure of independence, and since intuitively ran-

dom sequences are such that their bit values are independent of one another,

it follows that such a sequence cannot be intuitively random.

This is not an unreasonable argument for the MLR-advocate to make, as Martin-

Löf randomness does not have this problem; if R = R0 ⊕ R1 is Martin-Löf random,

then R0 is Martin-Löf random relative to R1, and vice versa.29 Thus, crucially, by

27By “standard approach”, I mean that this is the approach one commonly finds in the algorith-
mic randomness literature.

28Note that every definition of algorithmic randomness can be relativized to an oracle X ∈ 2ω.
For instance, X-Martin-Löf randomness is defined in terms of X-Martin-Löf tests, where each
component of such a test is given by an X-c.e. collection of finite sequences.

29This result, known as van Lambalgen’s Theorem, is a powerful tool in the study of algorithmic
randomness. See, for instance, [vL90].
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appealing to this counterexample, the MLR-advocate does not undermine the claim

of the correctness of MLR.

Another putative disqualifying property that has been attributed to some Schnorr

random sequences involves incompressibility.

Putative Disqualifying Property 2: There are Schnorr random sequences

that are highly compressible, where this compressibility is understood in terms

of prefix-free Kolmogorov complexity.30 But since intuitively random sequences

are not compressible, it follows that these sequences are not intuitively random.

Again, the MLR-advocate does not face this problem, as the initial segments of a

Martin-Löf random sequence have high Kolmogorov complexity and are thus incom-

pressible. Thus, as with Putative Disqualifying Property 1, this counterexample also

doesn’t undermine the MLCT.

Third, we have a disqualifying property that is somewhat surprising:

Putative Disqualifying Property 3: There is a Schnorr random sequence X

and a computable place selection S such that there limiting relative frequency

of 0s in X is not equal to the limiting relative frequency of 0s in the selected

30Even though no Schnorr random is compressible by means of a computable measure machine
(as touched on briefly in Subsection 10.3.3) there are some Schnorr random sequences that highly
compressible by any universal prefix-free machine (which is not a computable measure machine):
There is a Schnorr random sequence X ∈ 2ω such that for every computable, non-decreasing,
unbounded function g : ω → ω,

K(X�n|n) ≤ h(n)

for almost every n ∈ ω (where K(·|·) denotes prefix-free conditional complexity).
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subsequence XS. In other words, X is not random according to Church’s

definition.31

Given that Schnorr’s definition is “more effective” than Martin-Löf’s, requiring

of the statistical properties of randomness that they be effectively detectable, it is

surprising that although every Martin-Löf random sequence is random in Church’s

sense, some Schnorr random sequences are not.

But even if we were to accept that intuitively random sequences cannot have these

disqualifying properties, there is still more work to be done if the MLCT is going to

be established. For these two counterexamples, if successful, only show that SR is

Type II defective, but they don’t imply that (SR\MLR)⇒ ¬IR). In particular, even

if there are some sequences in SR\MLR that are not intuitively random, this doesn’t

rule out the possibility that intuitive randomness is captured by some definition the

extension of which lies strictly between MLR and SR.32 What the MLR-advocate

needs is to define some property that is incompatible with intuitive randomness but

which is satisfied by every sequence in SR \MLR. Here’s one suggestion:

31See [Wan96], Theorem 3.3.5.

32To date, researchers in algorithmic randomness have identified at least five non-equivalent
definitions strictly between MLR and SR, and potentially a sixth, pending the solution of the
most important and longest standing open problem in the field, whether MLR is equivalent to a
definition of AR known as Kolmogorov-Loveland randomness. [MMN+06] and [BHKM10] provide
all the relevant details.
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Putative Disqualifying Property 4: Each sequence is SR \MLR computes

a function that dominates (or grows faster than) every computable function.33

But the collection of sequences that compute such a fast-growing function is

a set of measure zero, and thus such sequences are atypical. Since intuitively

random sequences are should not have any atypical computational properties,

it follows that intuitively random sequences cannot compute any function that

dominates every computable function.

Given this latter collection of counterexamples, showing that (SR \ MLR) ⇒

¬IR) initially looks promising. If the MLR-advocate can successfully establish that

Putative Disqualifying Property 4 is a legitimate disqualifying property, he will not

only show that Schnorr randomness is Type II defective, but he will show that every

X ∈ SR /∈ MLR fails to be intuitively random.

However, this line of argument is not available to the MLR-advocate, as the

conclusion comes at a cost that the MLR-advocate cannot afford: some Martin-Löf

random sequences also have this property of computing sequences that grow faster

than every computable function.34 It follows that if we are to appeal to Disqualifying

Property 4 in order to show that (SR \MLR) ⇒ ¬IR, we thereby would show that

MLR is Type II defective. Thus, we have a way of sharpening the notion of typicality

33That is, for each such sequence X there is a function f that is Turing computable in X (denoted
f ≤T X) such that for every computable function g,

(∃m)(∀n ≥ m)[g(n) ≤ f(n)].

34This is due to the fact that some Martin-Löf random sequences are Turing complete; that is,
using such a sequence as an oracle, one can solve Turing’s halting problem. I’ll discuss this further
in Subsection 10.5.1.
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that seems to rule out every X ∈ SR \ MLR from being intuitively random, but

unfortunately for the MLR-advocate, some sequences in MLR are thus ruled out as

well.

In sum, there’s still unfinished business for the MLR-advocate, as there is currently

no other putative disqualifying property for him to invoke in order to show that

(SR \ MLR) ⇒ ¬IR. To make matters worse, Schnorr randomness is not the only

definition of randomness that poses a threat to Martin-Löf randomness.

10.5 The Challenge of Weak 2-randomness

Not only does the MLR-advocate have to face the challenge of the SR-advocate,

who claims that Martin-Löf randomness is Type I defective, but he also has to face

the challenge posed by the advocate of weak 2-randomness (denoted W2R), a strictly

stronger definition of randomness.35 Whereas a sequence is Martin-Löf random if it

avoids all Martin-Löf tests, a sequence is weakly 2-random if it avoids all generalized

Martin-Löf tests, where a generalized Martin-Löf test is a uniformly computable

sequence of Σ0
1 classes {Ui}i∈ω such that

lim
n→∞

λ(Ui) = 0.

Equivalently, a sequence is weakly 2-random if it is not contained in any Π0
2 classes

of measure 0. Thus it follows that every weakly 2-random sequence is Martin-Löf

random (since the intersection of each Martin-Löf test is a Π0
2 class of measure 0) ,

35This definition was originally formulated in [Kur81] and further studied in [GS82] and [Kau91].
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but below we will see that the converse does not hold.

Perhaps the most striking characterization of weak 2-randomness is given by a

recent algorithmic randomness, according to which X ∈ 2ω is weak 2-random if and

only if X is Martin-Löf random and forms a minimal pair with the halting set ∅′ in

the Turing degrees.36 This latter condition means that any set that is computable

from X and computable from ∅′ must be a computable set; that is, there are no

non-computable sets computable from both X and from ∅′.37

This result has important consequences: The collection of weakly 2-random se-

quences is the largest subcollection of the Martin-Löf random sequences that avoids

certain properties that some have argued are incompatible with intuitive randomness.

Consequently, the MLR-advocate has to address a number of putative disqualifying

properties offered by the W2R-advocate in support of the claim that Martin-Löf

randomness is Type II defective.

10.5.1 Putative Counterexamples to the MLCT

Compared to the other putative disqualifying properties, this first putative dis-

qualifying property has received the most attention in the philosophical literature on

algorithmic randomness. However, it’s not entirely clear why this property should

disqualify a sequence instantiating it from being counted as intuitively random.

36One direction is shown in [DNWY06], while the other direction was proven by Hirschfeldt and
Miller (unpublished). The full proof can be found in Section 2.5.3.1.

37In the language of the Turing degrees, if X ∈ x, then x ∨ 0′ = 0.
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Putative Disqualifying Property 5: Some Martin-Löf random sequences

are ∆0
2, or equivalently, are decidable by a trial-and-error predicate.38

Why might such sequences be counterexamples to the MLCT? There are several

ways that this has been argued. For instance, Panu Raatikainen writes of Chaitin’s

Ω, a well-known and much studied Martin-Löf random sequence that is ∆0
2 (to be

defined shortly),

The important aspect that matters here is that a trial and error procedure
is still completely deterministic; the machine described above proceeds
in a perfectly determinate manner. This means in particular that Ω,
although not recursively enumerable, can still be generated by a com-
pletely deterministic procedure. And this, in turn, should raise some
doubts about the genuine randomness of Ω, and more generally, about
the plausibility of a definition of randomness that counts such sequences
as random ([Raa00], p. 221).

If we hold that no intuitively random sequence can be “generated by a completely

deterministic procedure”, and we accept that sequences such as Ω can be generated

by a completely deterministic procedure, then Raatikainen’s conclusion would follow.

However, there is some cause for concern, given that the procedure that one can use to

generate Ω is not a Turing-computable procedure, but is rather a hypercomputational

procedure.39 Should a sequence be disqualifed from being counted as intuitively

38A predicate P ⊆ ω is a trial-and-error predicate if and only if there is a total computable
function f : ω2 → ω such that (i) P (x) holds if and only if limy→∞ f(x, y) = 1 and (ii) ¬P (x) holds
if and only if limy→∞ f(x, y) = 0, where limy→∞ f(x, y) = n if there is some stage z after which
f(x, y) has stabilized; that is,

lim
y→∞

f(x, y) = n ⇔ (∃z)(∀y ≥ z)f(x, y) = n.

39A hypercomputational procedure is one that computes functions or sets of natural numbers
that are not Turing computable.
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random if it can be generated by a hypercomputational procedure? Perhaps not. For

on a sufficiently broad reading of “hypercomputational procedure”, every sequence

can be generated by a hypercomputational procedure.40 For Raatikainen’s argument

to succeed, then, he would have to identify a proper subcollection of the collection

of all hypercomputational procedures such that any sequence that can be generated

by one of these procedures cannot be intuitively random.41

An alternative explanation as to why being ∆0
2 is a disqualifying property, which

doesn’t face the same problems as Raatikainen’s explanation, is given by Daniel

Osherson and Scott Weinstein, who describe the “tension” between randomness and

decidability by a trial-and-error in the following way:

Consider a physical process that, if suitably idealized, generates an in-
definite sequence of independent random bits. One such process might
be radioactive decay of a lump of uranium whose mass is kept at just the
level needed to ensure that the probability is one-half that no alpha par-
ticle is emitted in the nth microsecond of the experiment. Let us think of
the bits as drawn from {0,1} and denote the resulting sequence by x with
coordinates x0, x1, . . . . Now wouldn’t it be odd if there were a computer
program P with the following property?

1. For any input i, P enters a nonterminating routine that writes a
nonempty, finite sequence b1, . . . , bm with bm = xi (m depends on i).

The program will not, in general, allow prediction of xi inasmuch as there
is no requirement that the ultimate bit bm written by P (i) be marked
as final. Nonetheless, shouldn’t randomness exclude any computational

40For instance, any Turing machine equipped with a sufficiently strong oracle is a hypercom-
putational procedure, and since every sequence is computable by a Turing machine equipped with
some sufficiently strong oracle, my claim follows. Or, for a given sequence X, one can cook up a
more exotic hypercomputational procedure that computes X.

41This is just another variant of the admissibility objection as discussed in Chapter 8.
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process from having the kind of intimate knowledge of xi described in 1?
([OW08], p. 56)

There certainly appears to be some tension here, for property 1 is a fairly strong

computational property: although a sequence satisfying property 1 is not decidable,

it is decidable in the limit. But Osherson and Weinstein fail to say why it is that ran-

domness should exclude any computational process from deciding the sequence in the

limit.42 Nonetheless, the main improvement of this argument over Raatikainen’s is

that Osherson and Weinstein offer an alternative definition of randomness that does

not have this property, namely weak 2-randomness (which they refer to as strong

randomness).43 Thus, the suggestion is that in the presence of a definition of ran-

domness that is stronger than Martin-Löf randomness and avoids this property, this

latter definition should be preferred as capturing the prevailing intuitive conception

of randomness.

While the W2R-advocate can appeal to Martin-Löf random sequences that are

Turing below ∅′ (i.e., the ∆0
2 sequences) in support of the claim that Martin-Löf ran-

domess is Type II defective, she can also appeal to the Martin-Löf random sequences

that are Turing above ∅′:
42Here are two suggestions. First, property 1 can be seen as a kind of predictability; conse-

quently, sequences with property 1 are not unpredictable, and thus are not intuitively random.
Second, the collection of sequences satisfying property 1 is a set of measure zero (as only countably
many sequences have this property), and so sequences with property 1 are atypical, and hence not
intuitively random.

43No weakly 2-random sequence is ∆0
2, since every ∆0

2 sequence is a Π0
2 singleton (and thus is

contained in a Π0
2 subset of 2ω of measure 0). Alternatively, this also follows from the fact that being

∆0
2 is equivalent to being Turing computable from ∅′, and thus no non-computable ∆0

2 sequence
can form a minimal pair with ∅′ (for if A is non-computable and ∆0

2, then if A ∈ a, a∨0′ = a 6= 0).
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Disqualifying Property 6: Every Turing degree above (and including) the

Turing degree of the halting problem ∅′ contains a Martin-Löf random sequence.

This result, known as the Kučera-Gács theorem,44 has a very strong consequence:

For every sequence X ∈ 2ω, there is some Martin-Löf random sequence such that

X ≤T A. That is, every set, no matter how complicated, is Turing reducible to some

Martin-Löf random sequence.45 Thus, for instance, we can find a Martin-Löf random

sequence from which the first-order theory of true arithmetic (i.e., every sentence in

the language of first-order arithmetic that is true in (N,+,×, 0, 1)) can be effectively

determined.

Why should this count as a disqualifying property? Again, sequences with this

property are atypical, as all are contained in S = {X : X ≥T ∅′}, a set of measure

zero. Further, S contains no weakly 2-random sequences (since no sequence in S

forms a minimal pair with ∅′46), so it’s not unreasonable for the W2R-advocate to

suggest this property as a putative disqualifying property.

One last putative disqualifying property that the W2R-advocate can offer in sup-

port of the claim that Martin-Löf randomness is Type II defective involves Chaitin’s

Ω, already referenced in the discussion of Disqualifying Property 5. If we let U be a

44This result was proven independently by Kučera in [Kuč85] and by Gács in [Gác86].

45Given X ∈ 2ω, the Turing degree of X ⊕ ∅′ is above the Turing degree of ∅′, and thus X ⊕ ∅′
isTuring equivalent to some Martin-Löf random sequence.

46For X ∈ S, if x = degT (X), then x ∨ 0′ = 0′.
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universal, prefix-free Turing machine, then we can define Ω as:

Ω := λ(dom(U)) =
∑

σ∈dom(U)

2−|σ|.47

There are a number of very strong properties satisfied by Ω but not satisfied by any

weakly 2-random sequence. Thus, from the point of view of the W2R-advocate, we

have yet another disqualifying property:

Putative Disqualifying Property 7: Martin-Löf randomness counts Chaitin’s

Ω among the random sequences.

Why think that the Type II defectiveness of Martin-Löf randomness follows from

the fact that Ω is Martin-Löf random? Here are several properties of Ω that might

lead one to think that it is not intuitively non-random:

1. For every n ∈ Ω, from the first n bits of Ω, Ω�n, we can determine whether

U(σ)↓ for all σ ∈ 2<ω such that |σ| ≤ n. From this it follows that Ω is Turing

complete.48

2. Ω is a left-c.e. real, i.e., it is the limit of a computable, non-decreasing sequence

of rational numbers.49

47Since there are infinitely many universal prefix-free Turing machines, we should technically
write Ω as ΩU and refer to Ω-numbers, not one single number Ω.

48This is due to Chaitin, who first defined Ω in [Cha75].

49This simply follows from the definition of Ω, given above.
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3. Ω is a Solovay complete, which means that for any left-c.e. real α, there is some

constant c and some computable function f such that for any rational number

q < α,

c(Ω− q) > α− f(q).

Thus for any sequence of rationals numbers effectively converging to Ω can be

effectively transformed to a sequence of rationals effectively converging to α at

roughly the same rate.50

These latter two properties taken together yield a particular noteworthy conse-

quence, for being a left-c.e. Solovay complete real is a sufficient condition for being

Martin-Löf random (and thus by (2) and (3) above, it is necessary and sufficient

for being equal to ΩU for some universal prefix-free Turing machine U).51 Clearly

there is something strange going on here. For here we have a property that prima

facie has nothing to do with the prevailing intuitive conception of randomness (and

moreover, appears to be non-random according to the prevailing intuitive concept

of randomness) and yet the satisfaction of this property is a sufficient condition for

being counted as random.

A rough explanation of what is going on here is this: one can exploit the computa-

tional power of Ω to diagonalize into the collection of Martin-Löf random sequences.

For instance, consider the proof that Ω is incompressible. The general idea of the

50This was first shown by Solovay in his unpublished notes [Sol75].

51In [CHKW01], Calude, Hertling, Khoussainov, and Wang show that if a sequence is a Solovay
complete left-c.e. real then it is an Ω-number. Later, Kučera and Slaman in [KS01] show that any
left-c.e. Martin-Löf random real is already Solovay complete, and is thus an Ω-number.
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proof is as follows:52

(a) We consider an approximation of Ω given in terms of some increasing sequence

of rationals that converge to it.

(b) For a fixed stage s, we consider in parallel the Kolmogorov complexity of initial

segments of the stage s approximation of Ω.

(c) If we ever see a potential witness that one such initial segment can be com-

pressed, we define a new computation in terms of some fixed prefix-free machine

M .

(d) Because the prefix-free machine in terms of which Ω is defined is universal, this

new computation must be simulated by the universal machine, thereby forcing

the stage s approximation of Ω to change.

(e) By a careful choice of both M (by means of the recursion theorem) and the

string involved in the new computation, the change in the stage s approxima-

tion of Ω occurs at a place that invalidates the potential witness of compress-

ibility.

(f) Every witness to a compressible initial segment of some approximation of Ω is

eventually thwarted, and thus Ω is incompressible.

This is a fascinating phenomenon, and one that surely raises a number of questions

about the relationship between Martin-Löf randomness and the prevailing intuitive

conception of randomness. At a minimum, there is certainly tension here, which is

52Here I am following the proof as given in [DH10], p. 228.
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recognized by many of those working in the field of algorithmic randomness. For in-

stance, Downey and Hirschfeldt write, “It is important to note that Ω is a somewhat

misleading example of [Martin-Löf randomness], as it is rather computationally pow-

erful” ([DH10], p. 228). Shortly thereafter they add, “Thus one should keep in mind

that, while Ω is certainly the most celebrated example of [Martin-Löf randomness],

it is not ‘typically [Martin-Löf random]’ ([DH10], p. 229).

10.5.2 The Response of the MLR-Advocate?

Before concluding this section, let’s consider whether there anything that the

MLR-advocate can say in response to the W2R-advocate. Here are two suggestions:

First, the MLR-advocate can raise Putative Disqualifying Property 1 again, as there

are weakly 2-random sequences R = R0 ⊕ R1 such that R0 is not weakly 2-random

relative to R1, and vice versa.53

But a more interesting suggestion is this: the MLR-advocate can concede that

the putative disqualifying properties offered by W2R-advocate are legitimate disqual-

ifying properties, but instead of further conceding that weak 2-randomness is the

correct definition of randomness, he can opt for an even stronger definition, Martin-

Löf randomness relative to the halting problem ∅′, also referred to as 2-randomness

(which I’ll write as 2MLR). This might be an attractive possibility for a number

of reasons: first, the convergence results discussed above still hold, in relativized

form, for 2-randomness.54 Further, from the point of view of the 2MLR-advocate,

53This was shown by Kautz in [Kau91], and independently by Barmpalias, Downey, and Ng in
[BDN11].

54As mentioned in footnote 29, there is at least another convergence result that might support
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weak 2-randomness is now Type II defective, for every 2-random sequence is weakly

2-random, but the converse doesn’t hold.

However, this is a dangerous game, for one can define a version of Chaitin’s Ω

relative to ∅′, Ω∅
′
, a sequence that can shown to be 2-random by almost exactly the

same proof that shows that Ω is Martin-Löf random that I outlined above. Moreover,

although Ω∅
′

cannot compute ∅′′, when the information in ∅′ is also available, one

can compute ∅′′.55 Lastly, Ω∅
′

is left-c.e. relative to ∅′ and Solovay complete relative

to ∅′, and, as before, these the satisfaction of these two properties is sufficient for

2-randomness.56

Surely, the advocate of weak 3 -randomness57 will offer these as putative disquali-

fying properties, but the advocate of 3-randomness58 can trump these concerns, and

so on. This phenomenon should give us pause as we ponder the possibility of a single

definition that captures the prevailing intuitive conception of randomness.

the cause of the 2MLR-advocate, the equivalence of 2-randomness with a notion of incompressibility
given in terms of plain Kolmogorov complexity.

55That is Ω∅
′ ⊕ ∅′ is Turing equivalent to ∅′′.

56In fact, for any A ∈ 2ω, one can define, ΩA, Chaitin’s Ω relative to A, which is Martin-Löf
random relative to A, left-c.e. relative to A, and Solovay complete relative to A (where these two
conditions are necessary and jointly sufficient for a sequence being an Ω-number relative to A.
These results were first shown in [DHMN05].

57X ∈ 2ω is weakly 3-random if and only if X is not contained in any Π0
3 subset of 2ω of measure

zero.

58X is 3-random if and only if X is not Martin-Löf random relative to ∅′′.
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10.6 The Next Step

My intention in this chapter was not to settle any of the specific issues that I

raised here (such as determining which putative disqualifying properties should be

considered as legitimate disqualifying properties, or how to supplement the conver-

gence results so as to establish the MLCT), but rather to lay out the key challenges

that faces the MLR-advocate, as well as the advocates of alternative definitions such

as Schnorr randomness, weak 2-randomness, and 2-randomness. In so doing, I have

provided much of the raw material necessary to understand the Justificatory Chal-

lenge facing the D-advocate, which I discuss in the next chapter.
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CHAPTER 11

THE JUSTIFICATORY CHALLENGE

11.1 Introduction

Over the last two chapters, we’ve seen that carrying out the task of identifying the

“intuitive requirements” that an acceptable definition of randomness should satisfy

is far from straightforward, particularly in the absence of a clear indication as to

what role such a definition is intended to play. Even if we identify this role as the

role of providing a conceptual analysis of the notion of random sequence, this does

not really make the task any easier; the advocate of the claim that a given definition

of randomness D successfully fills the conceptual-analytic role still must face the

burden of picking out the properties that are necessary and sufficient for a sequence

to be intuitively random.

Why do I characterize this task as a burden? Answering this question is the

central goal of the present chapter. The main claim for which I argue is that the D-

advocate must overcome what I call the Justificatory Challenge in order to establish

that D captures the prevailing intuitive conception of randomness. This challenge

for the D-advocate is as follows:
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Justificatory Challenge: Provide a sharpening of the prevailing intu-

itive conception of randomness that is precise enough to block the claims

of extensional adequacy made concerning alternative definitions of ran-

domness without undermining the claim of the extensional adequacy of

D .

Why think that the D-advocate must face this particular challenge? This follows

from three pieces of data, which indicate (1) that the D-advocate must establish the

Type II defectiveness of weaker definitions of randomness while deflecting the claim,

made by the advocates of stronger definitions of randomness, that D is Type II defec-

tive, (2) that she must do so by making recourse to the so-called prevailing intuitive

conception of randomness, and (3) that this prevailing intuitive conception is not

precise enough to underwrite the claims that alternative definitions of randomness

are Type II defective and D-randomness is not.

After arguing that the D-advocate must meet the Justificatory Challenge, I will

argue that there are no compelling reasons to hold that this challenge can be met.

This alone is not particularly strong evidence that the D-advocate cannot establish

her claim of the extensional adequacy of D . That is, we do not yet have sufficient

grounds for holding the No-Thesis Thesis, the claim that no definition of random-

ness that has a definite, well-defined extension can capture the prevailing intuitive

conception of randomness. In the next chapter, I supplement the argument given

here with the goal of providing these grounds.

There is one serious objection that one can raise to my claim that the D-advocate

must face the Justificatory Challenge: If the D-advocate must face this burden, why
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shouldn’t we also require the advocate of the CTT to meet a similar Justificatory

Challenge? That is, one might argue that I am unfairly demanding the D-advocate to

meet a challenge that is not imposed on the advocates of other claims of extensional

adequacy. This is an important matter to clarify, and so I will devote the latter

part of the chapter to isolating the salient differences between the task of justifying

the CTT and the task of justifying the MLCT. As I argue, these differences are

significant, so much so that it is not problematic to hold both the view that the

MLR-advocate must the Justificatory Challenge and the view that the advocate of

the CTT does not.

In the next section, Section 11.2, I explain why the D-advocate must face the Jus-

tificatory Challenge, laying out the three pieces of data discussed above. In Section

11.3, I address two questions raised by my discussion of the Justificatory Challenge:

I outline what it means to offer a sharpening of the prevailing intuitive conception

of randomness, and then I explain just how burdensome the Justificatory Challenge

should be for the D-advocate. Lastly, in Section 11.4, I respond to the objection

discussed in the previous paragraph, namely that I unfairly pose the Justificatory

Challenge to the D-advocate but not to, say, the adherent of the CTT.

11.2 The Basis of the Justificatory Challenge

In what follows, let D be some currently available of definition of algorithmic

randomness, potentially the subject of the claim asserting that D-randomness fills

the conceptual-analytic. The first step in my argument is to explain why it is the

that D-advocate must face the Justificatory Challenge. Towards this end, I appeal
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to three pieces of data.

11.2.1 Datum 1: Weaker and Stronger Definitions of Randomness

The first datum to which I appeal in support of the claim that the D-advocate

must address the Justificatory Challenge is the fact that every definition of ran-

domness can be “sandwiched” between two definitions of randomness that are not

extensionally equivalent to D :

Datum 1: For every currently available definition D of algorithmic ran-

domness, there are definitions D1 and D2 of algorithmic randomness such

that

ext(D1) ( ext(D) ( ext(D2), (†)

where ext(D) is the extension of the definition D .1

This property (†) follows from a more general phenomenon: for every currently

available definition D of algorithmic randomness, there is some definition D1 of

algorithmic randomness and a parameter-free2 formula Θ of second-order arithmetic,

1As formulated, this statement is not quite true: there is at least one exception to this property
(†), namely Kurtz randomness (or at least two, if we count the collection of normal sequences
as a definition of randomness). However, to the best of my knowledge, no one claims that weak
randomness or normality captures the intuitive conception of randomness, for reasons that will be
discussed in Sections ? and ?. It would thus be more accurate for Datum 1 to begin with “For every
currently available definition of algorithmic randomness that is a serious candidate for capturing
the prevailing intuitive conception of randomness. . . ”

2It’s important that we require Θ to be parameter-free, for as soon as we allow parameters,
then for each parameter A, the formula X 6= A defines a set of measure one that excludes only the
sequence A. As we learned from the admissibility objection, discussed in Chapter 8, a definition of
typicality that includes sets definable in terms of such formulas is entirely too restrictive, as every
sequence comes out as atypical.
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such that

(i) ext(D1) ( ext(D),

(ii) Θ(2ω) := {X ∈ 2ω : Θ(X)} is a null set,

(iii) Θ(X) holds for some X ∈ ext(D), and

(iv) ¬Θ(X) holds for every X ∈ ext(D1).

Such a formula Θ defines what I referred to in the previous chapter as a putative

disqualifying property, for from the point of view of the D1-advocate, D is disqualified

from capturing the intuitive conception of randomness by dint of there being some

D-random sequence that satisfies Θ. In short, the D1-advocate holds that D is Type

II defective.

11.2.1.1 Instantiations of the Property (†)

We have already encountered one instance of this property (†) in the previous

chapter, as there we saw that the collection of Martin-Löf random sequences lies

strictly between the collection of weak 2-random sequences and the collection of

Schnorr random sequences:

W2R ( MLR ( SR
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Schnorr randomness also satisfies the property (†), sandwiched strictly between two

definitions, computable randomness3 (denoted CR) and Kurtz randomness4 (denoted

KR), definitions we have yet to discuss but which will come up later in the chapter:

CR ( SR ( KR

Further, the strongest definition of randomness we’ve encountered thus far in our

discussion, 2-randomness,5 is strictly stronger than weak 2-randomness, but in fact,

there are infinitely many definitions that are stronger:

. . . ( 3MLR ( W3R ( 2MLR ( W2R

That is, in general, we have

W(n + 1)R ( nMLR ( WnR

for every n ∈ ω.6

3As formulated by Schnorr, a sequence X ∈ 2ω is computably random if and only if no com-
putable martingale succeeds on X. This is strictly stronger than Schnorr randomness, which counts
as non-random those sequences on which a computable martingale succeeds with computable veri-
fication, as discussed in the previous chapter.

4A sequence X is Kurtz random if and only if X /∈ P for every Π0
1 class P of measure 0. Kurtz

randomness, sometimes referred to as weak randomness, is named after Kurtz, who formulated the
definition in his dissertation [Kur81].

5Recall that 2-randomness is Martin-Löf randomness relativized to the halting problem, ∅′ =
{x : φx(x)↓}, so that a sequence is 2-random if and only if it passes every Martin-Löf test that
comes equipped with ∅′ as an oracle.

6(†) also holds for many other definitions of randomness, most of which are not the subject of
any claims of extensional adequacy: resource-bounded notions of randomness, hyperarithmetical
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Given that D satisfies the property (†), in order for the D-advocate to justify

the claim that D captures the prevailing intuitive conception of randomness, she

must establish that D2 is Type II defective while blocking the claims made by the

D1-advocate that D is Type II defective. But in fact, she has to show even more,

namely that every sequence in ext(D) \ ext(D1) is intuitively random and that no

sequence in ext(D2) \ ext(D) is intuitively random. Let us consider how she might

carry this out.

11.2.2 Datum 2: Grounds for Adjudication

Unlike Datum 1, Datum 2 is not a straightforward claim about the various math-

ematical definitions of randomness, but rather it is a claim about the grounds ac-

cording to which one can adjudicate between the various definitions of randomness.

Datum 2: To establish the correctness of D , the D-advocate must pro-

vide grounds for adjudicating between the various definitions of random-

ness, but she can only do so by making recourse to the prevailing intuitive

conception of randomness.

I take these grounds of adjudication to be principled reasons to hold that one defi-

nition of randomness is adequate while all of the others are not. Clearly, then, the

D-advocate needs to identify the grounds of adjudication on the basis of which she

can conclude that (i) every D-random sequence is intuitively random (so that D is

notions of randomness, and set-theoretic definitions of randomness. It is beyond the scope of this
project to consider any of these definitions in detail, but I will discuss them briefly in the next
chapter, as such definitions lend themselves to the approach that I develop there.
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not Type II defective) and (ii) no non-D-random sequence is intuitively random. Let

us thus consider the ways that one might adjudicate between the various definitions

of randomness (some of which we already discussed in the previous chapter).

11.2.2.1 Adjudication via Paradigm Instances

First, one might adjudicate between the various definitions of randomness by

appealing to paradigm instances of random and non-random sequences. But there

is are several problems with this approach. The first problem is that the paradigm

instances of non-random sequences are already counted as non-random by each of the

definitions of randomness that are taken to be candidates for capturing the prevailing

intuitive conception of randomness.7 Thus, appealing to paradigm instances of non-

random sequences is of little help to us in adjudicating between the various definitions

of randomness.

The second problem is that it is far from clear what should be considered a

paradigm instances of a random sequence. In fact, one might reasonably question

whether there are any paradigm instances of random sequences. For suppose that

we identify some sequence X as a paradigm instance of a random sequence. In order

to adjudicate between various definitions by checking which definitions count X as

random and which ones do not, we need some way to make reference to X, but in

such a way that guarantees that we are referring to X and not some other sequence.

That is, there is some linguistic expression that refers to X such that any competent

7For example, each of these definitions counts among the non-random sequences all computable
sequences, all biased sequences (that fail the Law of Large Numbers), and all sequences that fail
the Law of the Iterated Logarithm.
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user of that expression can recognize that the expression refers to X and not to some

other sequence; that is, such a sequence satisfies Borel’s definition of an accessible

sequence, which we briefly discussed in Section 10.2.3.2. Herein lies the worry: If

X is accessible, why should it be counted as a paradigm instance of randomness?

Moreover, why shouldn’t X be counted as a paradigm instance of non-randomness?

I don’t intend to offer answers to these two questions, and for my purposes,

answers to these questions are not required, since the fact is that no one attempts

to adjudicate between the various definitions by appealing to paradigm instances of

randomness. Such instances just aren’t available.

11.2.2.2 Adjudication via Disqualifying Properties

Clearly, we cannot adjudicate between the various definitions of randomness by

appealing to paradigm instances of random and non-random sequences. An alter-

native approach is to adjudicate between the various definitions of randomness by

appealing to certain putative disqualifying properties. This is an approach that we

have already discussed at length in the previous chapter. For instance, we’ve seen

that the MLR-advocate invokes certain putative disqualifying properties in support of

the claim that Schnorr randomness is Type II defective, while the W2R-advocate in-

vokes other putative disqualifying properties in support of the claim that Martin-Löf

randomness is Type II defective.

Let’s consider the general form of the arguments for Type II defectiveness that

are given in terms of disqualifying properties. In what follows, D∗ is some definition

of randomness that is claimed to be Type II defective.
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(P1) There is some D∗-random sequence X that satisfies property P .

(P2) No sequence satisfying P is intuitively random.

(P3) If there is a D∗-random sequence that is not intuitively random, then

D∗ fails to capture the prevailing intuitive conception of randomness.

(C) Therefore, D∗ fails to capture the prevailing intuitive conception of randomness.

For each instance of this argument schema, the property P in (P1) and (P2) is

filled in by a putative disqualifying property. While (P1) is straightforward and

(P3) is relatively uncontroversial,8 instances of (P2) are the subject of some dispute.

For how does one show that a putative disqualifying property is a legitimate one?

That is, how can we establish of a given property P that it is incompatible with

the prevailing intuitive conception of randomness, in the sense that no intuitively

random sequence can satisfy it? An appeal to the prevailing intuitive conception of

randomness is clearly necessary in this case. As for the form such an appeal is to

take, let us bracket this until we discuss the third datum below.

11.2.2.3 Adjudication via Properties of Randomness

In addition to adjudicating between the various definitions of randomness by

appealing properties that intuitively random sequences should not satisfy, one might

also try to adjudicate between the various definitions of randomness by appealing

to properties that random sequences should satisfy, the properties that Martin-Löf

8Rather, (P3) should be relatively uncontroversial among those who seek a definition of ran-
domness that captures the prevailing intuitive conception of randomness.
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referred to as “properties of randomness”.

Of course, this approach will only succeed if we can determine which properties are

the properties of randomness. From our discussion of the exemplary ideal in Chapter

9, the difficulty of identifying these properties of randomness should be clear. Ville

considered this to be an unsolvable problem, while Martin-Löf made a reasonable

attempt to associate the properties of randomness with those properties that are

testable by means of c.e. sequential tests. However, Schnorr argued that not every c.e.

sequential test corresponds to a property of randomness; only those sequential tests

that test for effectively detectable properties (so that we can effectively determine

whether a sequence has passed the test) correspond to properties of randomness.

In general, for any definition of algorithmic randomness D , there is a countable

collection of properties {ΦD
i }i∈ω such that

ext(D) =
⋂
i∈ω

{X : ΦD
i (X)}.

The task of adjudicating between the various definitions of randomness via properties

of randomness thus boils down to the task of determining which collection of formulae

{ΦD
i }i∈ω define the properties of randomness. This collection would then yield the

individually necessary and jointly sufficient conditions for a sequence to be intuitively

random.

Consequently, the D-advocate will need to argue that {ΦD
i }i∈ω is the desired

collection of properties, but in order to do so, she must successfully establish that all

and only the intuitively random sequences satisfy all of the properties in {ΦD
i }i∈ω.

Clearly, then, as was the case with adjudication via disqualifying properties, recourse
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to the prevailing intuitive conception of randomness is necessary to carry out this

task.9

We have seen that among the grounds for adjudication available to the D-

advocate are to appeal to disqualifying properties and to properties of randomness.

But there is another possibility: the D-advocate can appeal to certain purposes that

an extensionally adequate definition of randomness might fulfill.

11.2.2.4 Adjudication via Purposes

How might one adjudicate between the various definitions of randomness by ap-

pealing to the purposes that such definitions might fulfill? In particular, how can

the D-advocate appeal to these purposes to establish the correctness of D? Here’s

one approach:

Step One: Identify a purpose that can only be fulfilled by a definition of

randomness that captures the prevailing intuitive conception of randomness.

Step Two: Establish that D fulfills this purpose.

9Note, however, that this task cannot be carried out independently of the task of identifying
which putative disqualifying properties should be counted as legitimate. Moreover, it’s not clear that
these two tasks are even distinct. Since a disqualifying property Q is a property that is satisfied by
only measure zero many sequences (for otherwise, this would conflict with the universally accepted
view that the collection of random sequences should have measure one), it follows that the collection
of sequences not satisfying Q has measure one. Thus if we hold that no intuitively random sequence
can satisfy Q, then it follows that every intuitively random sequence should satisfy the property P
such that for each X ∈ 2ω,

P(X) if and only if ¬Q(X).

That is, Q should be considered as a legitimate disqualifying property if and only if P is considered
as a property of randomness.
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But to what purpose could the D-advocate appeal here? Obviously, it can’t be the

purpose of capturing the prevailing intuitive conception of randomness, as that is

the claim the D-advocate is ultimately trying to establish. Thus, she must identify

some other purpose that only can be fulfilled by a correct definition of randomness.

Perhaps that purpose is to serve as a replacement for imprecise uses of the phrase

“random sequence” in certain scientific contexts. If so, the D-advocate should iden-

tify these uses and these contexts and explain why “D-random sequence” can serve

as a suitable replacement for uses of the phrase “random sequence” in those contexts.

There is some risk in this approach, however: if the D-advocate merely identifies

one or more contexts in which “D-random sequence” is a suitable replacement for the

use of the phrase “random sequence” in those contexts, this leaves open the possibility

that there is some other context and some other definition of randomness D0 such that

“D0-random sequence” is a suitable replacement for the uses of “random sequence”

in this other context.10 To rule of this possibility, the D-advocate needs to provide an

account as to why the contexts she has identified require a definition of randomness

that captures the prevailing intuitive conception of randomness to serve as a suitable

replacement for the informal notion of randomness used in those contexts. Further,

she most argue that any other contexts not included among those she identified do

not require a definition that captures the prevailing intuitive conception in order to

serve as a suitable replacement of the informal notion of randomness used in those

contexts.

10As I argue in the next chapter, this is precisely the situation we find with many of the definitions
of algorithmic randomness.

330



Of course, the considerations are only applicable if the D-advocate can identify

a purpose that can only be fulfilled by an extensionally adequate definition of ran-

domness. Yet as I will discuss in Section 11.4, such a purpose has yet to be identified

in the literature on algorithmic randomness. Since there are no readily identifiable

purposes that can only be fulfilled by an extensionally adequate definition of ran-

domness, hereafter we will restrict our attention to adjudication via disqualifying

properties and properties of randomness.

To sum up, it appears that the only grounds for adjudication available to the

D-advocate are disqualifying properties and properties of randomness. In each of

these cases, however, she must make recourse to the prevailing intuition conception

of randomness to identify which putative disqualifying properties are legitimate and

which properties are the properties of randomness.

11.2.3 Datum 3: The Lack of Precision

We’ve identified the grounds of adjudication to which the D-advocate can rea-

sonably appeal. But there is a further problem: although the prevailing intuitive

conception of randomness must serve as a constraint in determining which disquali-

fying properties and properties of randomness are the legitimate ones that determine

the correct definition of randomness, common formulations of this intuitive concep-

tion are not very precise, and certainly not precise enough to meet the needs of

D-advocate:

Datum 3: The prevailing intuitive conception of randomness, as com-

monly formulated, is not precise enough to permit justified adjudication

331



between the various definitions of randomness.

Before I offer evidence in support of Datum 3, let me say a word about this

datum. First, in presenting Datum 3, I am not denying that the prevailing intuitive

conception of randomness allows some justified adjudication between the various

definitions. For instance, most (if not all) informed individuals would hold that any

sequence that contains more 0s than 1s in each of its initial segments should not be

counted as random, in the sense that such a sequence is distinguishable from the

sequences that typically result from the repeated tosses of a fair coin. My claim

is that we cannot fully adjudicate between the various definitions of randomness

if the prevailing intuitive conception of randomness is to be the final arbiter in

these matters, as the prevailing intuitive conception lacks the precision necessary to

underwrite the judgments needed for such adjudication.

To verify Datum 3, let us consider both disqualifying properties and properties

of randomness as grounds of adjudication. First, I claim that the prevailing intuitive

conception of randomness does not help to resolve the question as to which putative

disqualifying properties are legitimate. If we look back at the disqualifying proper-

ties considered in the previous chapter, it’s hard to see how the prevailing intuitive

conception of randomness can help us decide which of these are legitimate. For in-

stance, should a sequence that is decidable in the limit be counted as not intuitively

random? What about a sequence that is compressible by some prefix-free machine

but not by any computable measure machine?11 What about a sequence from which

11While every Schnorr random sequence has high Kolmogorov complexity when measured in
terms of any computable measure machine, some Schnorr random sequences have extremely low
prefix-free Kolmogorov complexity.
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we can compute the halting problem? If we’re going to answer these and related

questions by appealing to the prevailing intuitive conception of randomness, a more

precise account of this conception is needed.

Do we fare any better when considering properties of randomness? Perhaps. For

in the previous chapter, I highlighted four hallmarks of randomness, properties on the

basis of which one attributes randomness to a sequence: typicality, unpredictability,

incompressibility, and independence. Each of these can be taken to provide some

sharpening of the prevailing intuitive conception of randomness. Do these help us

to determine which properties are to be included as the properties of randomness?

Unfortunately for the D-advocate, they do not.

In support of this claim, recall that as there are definitions of randomness based

on the first three of the these four hallmarks of randomness that converge to the

extension of Martin-Löf randomness, there are also similar definitions that converge

to the extension of Schnorr randomness. Additionally, one can find many other

non-equivalent definitions of randomness given in terms of these hallmarks. The

general point here is that the D-advocate cannot simply assert the correctness of

D-randomness on the grounds that D is a formalization of some hallmark of ran-

domness (or is equivalent to a number of definitions of randomness each of which

is a formalization of some hallmark of randomness), at least if we understand these

hallmarks of randomness as they are commonly formulated (such as the way they

are formulated in the literature on algorithmic randomness).

But there is another problem for the D-advocate involving the various hallmarks

of randomness, one that is closely related to the problem with identifying which
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putative disqualifying properties should be counted as legitimate. Specifically, for

each hallmark of randomness, there are ways of further sharpening the hallmark

that might undermine the claim of the correctness of D-randomness. For instance,

the MLR-advocate can argue that the MLCT is supported by the convergence of

Martin-Löf randomness with a definition of randomness based on the hallmark of

unpredictability. However, as ∆0
2 sequences are predictable-in-the-limit, and given

that there are ∆0
2 Martin-Löf random sequences, it follows that some Martin-Löf

sequences are, in some sense, predictable. So we have a hallmark of randomness,

unpredictability, that understood in one respect (in terms of computably enumerable

martingales) lends support to the MLCT, while understanding it in another respect

(in terms of predictions-in-the-limit) militates against it.

In sum, if the D-advocate is going to establish the correctness of D-randomness

by appealing to disqualifying properties and properties of randomness, she must

offer a precise enough account of the prevailing intuitive conception of randomness

to justify her choice of disqualifying properties and properties of randomness.

11.2.4 Upshot of the Data

Recall the statement of the Justificatory Challenge as given in Section 11.1:

Justificatory Challenge: Provide a sharpening of the prevailing intu-

itive conception of randomness that is precise enough to block the claims

of extensional adequacy made concerning alternative definitions of ran-

domness without undermining the claim of the extensional adequacy of

D .
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In light of our three pieces of data, that the D-advocate must face the Justificatory

Challenge is immediate. By Datum 1, the definition D satisfies the property (†), i.e.,

there are definitions of randomness D1 and D2 such that

ext(D1) ( ext(D) ( ext(D2).

Thus, if the D-advocate is going to establish the correctness of D-randomness, she

must show that (i) every sequence in ext(D) \ ext(D1) is intuitively random and

(ii) no sequence in ext(D2) \ ext(D) is intuitively random. By Datum 2, to carry

out this step, the D-advocate needs to provide grounds for adjudicating between

the various definitions of randomness. Moreover, these grounds must make recourse

to the prevailing intuitive conception of randomness. By Datum 3, however, this

prevailing intuitive conception that plays a necessary role in adjudication is not

precise enough to underwrite the claims that the D-advocate needs to secure to

establish the correctness of D .

It appears, then, that the only option available to the D-advocate is to offer a

more precise account of the intuitive conception of randomness, what I’m referring

to as a sharpening of the intuitive conception. That is, the D-advocate must meet

out the Justificatory Challenge.12

12One approach that the D-advocate might pursue in order to avoid meeting the Justificatory
Challenge is to fall back to the position that D provides not a conceptual analysis of randomness,
but an explication of randomness. According to Carnap, the key features of an explication are

1. The explicatum is to be similar to the explicandum in such a way that, in most
cases in which the explicandum has so far been used, the explicatum can be used;
however, close similarity is not required, and considerable differences are permitted.

2. The characterization of the explicatum, that is, the rules of its use (for instance,
in the form of a definition), is to be given in an exact form, so as to introduce the
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11.3 Several Questions

We’ve established that the D-advocate must meet the Justificatory Challenge.

But there are several pressing questions to be addressed. First, what exactly is a

sharpening of the prevailing intuitive conception of randomness? Second, just how

burdensome is this Justificatory Challenge?

11.3.1 What is a Sharpening of the Prevailing Intuitive Conception of Randomness?

As a first pass at answering this question, let’s briefly consider Peter Smith’s

discussion of the passage from a pre-theoretic concept to a precise formalization of

that concept, as found in his article “Squeezing Arguments” [Smi11]. According to

Smith, there are three conceptual levels involved in this passage:

Level One: First, we have “initial, inchoate, ‘unrefined’, ideas” of the concept

in question.

explicatum into a well-connected system of scientific concepts.

3. The explicatum is to be a fruitful concept, that is, useful for the formulation of
many universal statements (empirical laws in the case of a nonlogical concept, logical
theorems in the case of a logical concept).

4. The explicatum should be as simple as possible; this means as simple as the more
important requirements (1), (2), and (3) permits ([Car50], p. 7).

One benefit of this approach for the D-advocate is that D-randomness can be a successful explica-
tum of intuitive randomness even if not every D-random sequence is intuitively random. However,
by taking this approach, the D-advocate does not avoid having to meet the Justificatory Challenge,
for now she needs to provide grounds for holding that D , and not some alternative definition, pro-
vides an explication of the concept of randomness, since it can be reasonably claimed of a number of
definitions of randomness that they satisfy 1-3 above. Thus, this approach faces the same problems
as those faced by the advocate of the claim that D provides a conceptual analysis of the concept
of randomness.
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Level Two: Next, we have an “idealized though still informal and vaguely

framed notion”, having sharpened the Level One ideas in certain respects.

Level Three: Lastly, we arrive at “crisply defined notions”, i.e. one or more

formal concepts ([Smi11], pp. 28, 29).

Of particular interest for the present discussion is the passage from Level One to

Level Two, concerning which Smith writes,

The move from the first to the second level involves a certain exercise in
conceptual sharpening. And there is no doubt a very interesting story to
be told about the conceptual dynamics involved in such a reduction in
the amount of ‘open-texture’, as we get rid of some of the imprecision in
our initial inchoate ideas and privilege some strands over others — for
this exercise isn’t an arbitrary one ([Smi11], p. 29).

Moreover, what is distinctive about the passage from Level One to Level Two is that

“having done this much informal tidying, although on the face of it we’ve still left

things rather vague and unspecific, in fact we’ve done enough to fix a determinate

extension for the notion” in question ([Smi11], p. 28, emphasis in the original).

Thus, on Smith’s account, we don’t have a single intuitive concept at Level One, but

only a jumble of informal, intuitive ideas; it is only at Levels Two and Three that we

consider concepts, informal ones at Level Two and formal ones at Level Three. Thus,

when one shows that an intuitive notion is coextensive with some formal concept,

she shows a Level Two concept to be coextensive with a Level Three concept, at

least on Smith’s account.

From the above discussion, we can isolate two kinds of sharpening: the passage

from Level One to Level Two, which I’ll call sharpening1→2 and the passage from Level
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Two to Level Three, which I’ll call sharpening2→3. It is the former kind of sharpening,

sharpening1→2, of the intuitive conception of randomness that I claim the D-advocate

must provide. But although Smith’s account gives as a good start in understanding

sharpening1→2, we need to be more clear about what this sharpening1→2 is, so as not

to burden the D-advocate with some indeterminate task.

There are several distinctive features of sharpening1→2 that are readily identi-

fiable. First, Smith’s account suggests that we can think of sharpening1→2 as a

process that takes an input and produces some output, the input being a jumble

of pre-formal, intuitive ideas and the output being an informal concept that has a

definite extension. But there is an additional constraint: the informal concept that

is the output of the sharpening1→2 must bear some sort of conceptual connection to

the informal ideas that were the input of the sharpening1→2. Of course, now we’re

saddled with the task of explaining what this conceptual connection could be, itself

a tall order.13

However, we might get around the problem of identifying this conceptual con-

nection by considering some paradigm examples of sharpening1→2. Smith offers two

13What we take this conceptual connection to be will be determined, in part, by how we under-
stand the Level One ideas that serves as our input. Are they ideas concerning certain properties
P1, . . . , Pn? If so, then we might require of output concept C that it satisfy

C(x)⇒ Pi(x)

for at least one i ≤ n, where x is the relevant sort of object (it might be too much to require that
C(x) implies Pi(x) for every i ≤ n, since there’s no guarantee that P1, . . . , Pn are all satisfiable
by one single object x). What if we take these ideas to be certain propositions? Then we might
require some sort of implicational relationship between certain propositions about the concept C
and these Level One propositions. Clearly, there is much to fill in here, a task that would take us
beyond the scope of this study.
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such examples, the passage from Level One ideas of validity to the Level Two infor-

mal concept of validity-in-virtue of form, and the passage from Level One ideas of

computability to the Level Two informal concept of effective calculability. I won’t

consider the details of these examples here (although I did discuss the latter example

in the previous chapter under the guise of Turing’s “direct appeal to intuition”),

but in both cases, it is clear that the Level One ideas and the associated Level Two

concept are closely linked, so that, say, a competent user of the Level Two concept

will readily recognize that the Level One ideas apply to the same objects to which

the Level Two concept applies.

There’s a lot more to say about the notion of sharpening.14 At a minimum, for

the D-advocate to provide a sharpening of the intuitive conception of randomness

requires her to provide an informal Level Two concept of randomness that has a

definite extension. This leads us to the second question raised above: Just how

burdensome is this task?

11.3.2 How Burdensome is the D-advocate’s Burden?

Let’s recap what the supposed burden is that the D-advocate must address. The

D-advocate needs to provide a sharpening of the intuitive conception of randomness

so that

(i) every sequence in ext(D) \ ext(D1) is intuitively random according to this suf-

14I haven’t addressed how one actually engages in this activity of conceptual sharpening. To
answer this question, we need some way of gauging the degree of precision or sharpness of a char-
acterization of a concept. Unfortunately, no account of the degrees of precision of various charac-
terizations of a given concept is available, and to develop such an account would itself be a major
undertaking.
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ficiently precise account, and

(ii) no sequence in ext(D2) \ ext(D) is intuitively random according to this suffi-

ciently precise account.

What’s to prevent the D-advocate from actually carrying this out? One reason

to be doubtful that the D-advocate can bear this burden is there just aren’t any

reasonable options available to her. In the previous chapter, I laid out all of the

currently available lines of argument for the MLR-advocate to pursue just to show

that no sequence in SR \MLR is intuitively random, and none were successful. But

more pressing, it’s far from clear how the MLR-advocate should address the putative

disqualifying properties offered by the W2R-advocate. And the situation is no better

for both the SR-advocate and the W2R-advocate.

This should remind us of the predicament facing Ville as he tried to identify the

conditions of irregularity that would yield a definition of randomness that attained

the exemplary ideal. The problem was that every choice of conditions was an arbi-

trary choice. It may have seemed that there was no need to make an arbitrary choice

when Martin-Löf posed his definition in 1966; at the time, Martin-Löf randomness

may have appeared to be a candidate for attaining the exemplary ideal.

Since then, however, many definitions of randomness have accumulated, and to

adjudicate between them, it appears that we have to make arbitrary choices about

which putative disqualifying properties should be taken to be legitimate disqualifying

properties and which properties are to be counted as properties of randomness. That

is, there is no principled account offered as to why this property and not that one is

a property of randomness, or why this putative disqualifying property is legitimate
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while that one is not.

At this stage of my argument, I don’t take this to be particularly strong evidence:

the inability to discern what such a principled account could be may just be due

to a lack of vision on my part. But I think there are additional reasons to hold

that these apparently arbitrary choices made in support of various definitions of

randomness must be arbitrary; namely, an alternative account of the roles that

these definitions are to play, according to which none of the various definitions of

randomness fully captures all of the significant truths about randomness, but that

multiple definitions nonetheless provide insights into certain mathematical uses of

the concept of randomness. I discuss these roles in the next chapter.

11.4 A Serious Objection

Before we turn to the next chapter, there is one serious objection that should be

addressed here.15 The objection is this: If the D-advocate must face this burden,

why shouldn’t we also require the advocate of the CTT to meet a similar Justificatory

15There is also a noteworthy but less serious objection to consider. According to this objection,
my account is incomplete, as I’ve neglected to consider the possibility of a correct disjunctive
definition of randomness, formed by taking the disjunction of the various definitions of algorithmic
randomness, such as MLR, SR, CR, and so on. This isn’t much of an objection, however, for the
following reason: the definitions under consideration form a partial order (under containment of
the extensions of the definitions), and thus the extension of a disjunctive definition of randomness
is simply the union of all of the extensions of the definitions that are the disjuncts. Moreover in the
case that one definition D in the union is below all the others in the ordering given by ⊆, the union
of the definitions in the disjunction is simply coextensive with D . And this is precisely the situation
in which we find ourselves here: For instance, the union of the extensions of the definitions we’ve
considered in this chapter is

W2R ∪MLR ∪ CR ∪ SR ∪ KR = KR.

Therefore, nothing is gained in considering disjunctive definitions of randomness.
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Challenge? But given that the CTT is widely accepted even though the corresponding

Justificatory Challenge has not been met, why not hold that the D-advocate can

establish the correctness of D without meeting the Justificatory Challenge as laid

out in this chapter? More generally, one might worry that the standards that I’ve

set forth to justify the claim of the correctness of a formal definition of an intuitive

notion are so stringent as to rule out the possibility of justifying any claim that one

has provided a successful conceptual analysis of a concept such as randomness or

computability.

To be clear, although I’ve introduced the randomness-theoretic theses such as the

MLCT as analogues of the CTT, my intention is not to call into question extensional

adequacy theses in general ; in fact, my intention is to present an argument for the

No-Thesis Thesis the acceptance of which does not require one to reject the CTT.

Towards this end, I will highlight several important differences between the task of

justifying the CTT (henceforth, the CTT-JT (for justificatory task)) and the task of

justifying the MLCT (henceforth, the MLCT-JT).

In particular, there are three differences between the CTT-JT and the MLCT-JT

that I want to emphasize here:

(1) the challenge of viable alternatives,

(2) the sharpening of the associated intuitive notion, and

(3) the role of extensional adequacy.
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11.4.1 Difference 1: Viable Alternatives

The first difference between the CTT-JT and the MLCT-JT concerns the challenge

of viable alternatives to the relevant theses. Unlike the case with the MLCT, there is

a lack of viable alternatives to the CTT. While this certainly doesn’t mean that the

CTT is true by default, it does mean that the CTT-JT is not saddled with the same

problems that beset the MLCT-JT.16

But might the various alternative definitions of randomness be more akin to the

various models of computability than I am letting on? For just as there are vari-

ous relativized notions of randomness, there are also various relativized notions of

computability, and just as there are notion of randomness weaker than Martin-Löf

randomness, in the sense that they are less restrictive (for instance, computable

randomness, Schnorr randomness, and weak randomness), there are models of com-

putability weaker than Turing computability, in the sense that they compute fewer

functions (for instance, the primitive recursive functions, those functions computable

by a pushdown automaton, those computable by a finite state automaton, those com-

putable at various levels of the subrecursive hierarchies, and so on).

Do any of these alternative models of computability give rise to a thesis that is

a viable alternative to the CTT? First, there is a very good reason to think that

these “weaker” definitions do not capture all intuitively computable functions. Each

such collection of functions, such as the collection of primitive recursive functions,

is effectively enumerable, so if we let {ψe}e∈ω be the collection of primitive recursive

functions, then setting θ(e) = ψe(e) + 1 yields an intuitively computable function

16Of course, this is not to say that the CTT-JT might face problems that do not beset the
MLCT-JT.
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that is not primitive recursive, so that we have effectively diagonalized out of the

class of primitive recursive functions. Similarly, one can effectively diagonalize in this

way out of any class of functions weaker than the collection of Turing computable

functions.

But the same cannot be said for the class of Turing computable functions, since

the collection of total computable functions is not effectively enumerable. In fact, the

fact that one cannot diagonalize out of the class of computable functions convinced

Kleene of the truth of the CTT:

When Church proposed this thesis [i.e. Church’s Thesis], I sat down to
disprove it by diagonalizing out of the class of λ-definable functions. But,
quickly realizing that the diagonalization cannot be done effectively, I
became overnight a supporter of the thesis ([Kle81], p. 59).

But what about stronger alternative definitions of computability, which count more

functions among the intuitively computable functions? As we will now see, the fact

that the intuitive concept of computability can be made sufficiently precise allows us

to conclude that strong alternative definitions of computability are too strong.

11.4.2 Difference 2: Sharpening the Intuitive Notion

The second difference between the CTT-JT and the MLCT-JT that I want to

highlight here concerns the notion of sharpening that I discussed in Section 11.3.1.

Whereas the MLR-advocate is burdened with the task of sharpening the intuitive

conception of randomness in a unique way, a task that I have argued is unlikely to

be carried out successfully, the task of sharpening the intuitive conception of hu-

man computability appears to have been carried out successfully by Turing, as we
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discussed in the previous chapter (see Section 10.3.4.2). Gödel, among many oth-

ers, recognized this, stating that “the correct definition of mechanical computability

was established beyond any doubt by Turing”, supporting this claim by describing

Turing’s so-called “direct appeal to intuition” ([Göd93], p. 168).

One consequence of the sharpening that Turing offers is that by isolating the

distinctive features of a computation carried out by a human computor, we can rule

out those computational procedures involving access to an oracle as surpassing the

notion of human computability. By contrast, if we consider the notion of random-

ness, there appears to be no reasonable sharpening of the intuitive conception of

randomness that allows us to conclude that definitions of randomness stronger than

Martin-Löf randomness, such as weak 2-randomness surpass the intuitive conception

of randomness.

But there is more that one can say here. Recall the three conceptual levels

involved in the passage from a pre-theoretic, intuitive conception to a corresponding

formal concept, as identified by Smith and discussed in Section 11.3.1:

Level One: First, we have “initial, inchoate, ‘unrefined’, ideas” of the concept

in question.

Level Two: Next, we have an “idealized though still informal and vaguely

framed notion”, having sharpened the Level One ideas in certain respects.

Level Three: Lastly, we arrive at “crisply defined notions”, i.e. one or more

formal concepts ([Smi11], pp. 28, 29).

Now what do these levels look like when we consider the passage from initial, inchoate
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ideas of randomness to formal definitions of randomness? First, at Level One, we

have something along the lines of untutored, folk intuitions of randomness, intuitions

that inform everyday attributions of randomness to, say, events, sequences of events,

configurations of objects, and so on. In identifying the various hallmarks of random-

ness, on the basis of which we make attributions of randomness, we’ve already taken

a step to make these Level One ideas more precise. For instance, if we hold that a

sequence is random only if it is typical, this is certainly a sharpening of the Level

One ideas of randomness, but one not sharp enough to yield a definite extension of

sequences. Suppose we further sharpen the notion of typicality by formulating it in

terms of the avoidance of certain sets of measure zero—at this point, we’ve moved

well beyond merely ‘intuitive’ characterizations of randomness, as such a sharpening

will likely be informed by measure-theoretic considerations. But observe that we still

haven’t arrived at a concept with a definite extension, and so, according to Smith’s

account, we haven’t properly arrived at a Level Two concept, as there are many

choices available to us as to which sets of measure zero should be included in our

definition of typicality.

The crucial observation to make is this: as soon as we identify the sets of measure

zero in terms of which typicality is defined, we arrive at a Level Three, formal

concept. More importantly, at no point in this passage do we arrive at an informal

concept with a definite extension. Further, our informal, Level Two schema, prior

to the identification of these sets of measure zero, is consistent with multiple, non-

equivalent extensions. For instance, once we choose to characterize typicality in terms

of a certain collection of sets of measure zero, if we specify that a sequence is typical
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if it avoids all Π0
1 subsets of 2ω, we arrive at the definition of Kurtz randomness; if

instead of Π0
1 classes of measure zero, we consider the collection of Π0

2 classes F with

the restriction that each such F must have the form F =
⋂
i Ui with λ(Ui) = 2−i

for each i, then we arrive at the definition of Schnorr randomness. Further, if we

consider those Π0
2 classes F of the form F =

⋂
i Ui with λ(Ui) ≤ 2−i for each i,

then we arrive at the definition of Martin-Löf randomness; lastly, if we consider all

Π0
2 classes of measure zero, then we arrive at the definition of weak 2-randomness.

Importantly, prior to the specification of the class of measure zero sets, each of these

definitions was compatible with the above characterization of random sequences as

typical (i.e., that random sequences avoid certain sets of measure zero).

Smith’s model of the three conceptual levels involved in the passage from pre-

theoretic ideas of a notion to a precise formal concept thus does not appear to

be the appropriate model for considering the passage from informal, intuitive ideas

of randomness to formal definitions of randomness.17 In particular, since Smith

requires of Level Two informal concepts that they have a definite extension, it’s

not clear that the standard informal characterizations of randomness, such as those

given in terms of the various hallmarks of randomness, can be properly seen as

Level Two informal concepts of randomness. Instead, it appears that these informal

characterizations yield Level Two concept schemata. Prior to instantiating each

schema, we don’t have a concept with a definition extension, but once we instantiate

the schema by specifying the relevant collection of objects, we arrive at a Level Three

formal concept.

17I don’t intend to suggest here that Smith took his model to hold of all instances of the phe-
nomenon of passing from pre-theoretic ideas of a notion to a precise formal concept.
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The crucial observation to make here is this: it is the multitude of ways of instan-

tiating this schema that correspond to various sharpenings of the prevailing intuitive

conception of randomness. Perhaps this should come as no surprise. For in looking

back to the initial discussion of the various hallmarks of randomness in Chapter 4,

one will find that each of the three hallmarks of randomness in terms of which the

various definitions of randomness are given (typicality, unpredictability, and incom-

pressibility) can be viewed schematically. Let’s compare the hallmarks of randomness

as formulated in Chapter 4 with schematic versions of those same hallmarks:

(1a) Non-schematic approach to typicality: A sequence is typical if it is passes

every statistical test for randomness, and so is not detected as non-random by

any such tests.

(1b) Schematic approach to typicality: A sequence is typical with respect to a

collection C of statistical tests if it passes every test in C, and so is not detected

as non-random by any of the tests in C.

(2a) Non-schematic approach to unpredictability: A sequence is unpredictable

if its bits cannot be predicted by any method of prediction.

(2b) Schematic approach to unpredictability: A sequence is unpredictable

with respect to a collection C of methods of prediction if its bits cannot be

predicted by any method of prediction in C.

(3a) Non-schematic approach to incompressibility: A sequence is incompress-

ible if its initial segments cannot be compressed by any mode of compression.

348



(3b) Schematic approach to incompressibility: A sequence is incompressible

with respect to a collection C of modes of compression if its initial segments

cannot be compressed by any mode of compression in C.

Thus, we can view (1b), (2b), and (3b) as Level Two schemas: unless we fill in

some appropriate collection of objects C in each case, these don’t yield a concept

with a definite extension. But what’s more, it appears that the collection C is not

the only variable component of (1b), (2b), and (3b), for there are several ways to

fix the meaning of “passing a test”, “being predicted”, and “being compressed”. So

for instance, we can hold that a sequence is predictable if there is some computable

martingale that succeeds on it, or we can further require that there is a computable

procedure that verifies this success.18

On this schematic approach, we can catalogue the various definitions of random-

ness in the algorithmic randomness literature, as formulated in terms of

1. a hallmark of randomness, which I’ll call the motif of a definition,

2. a collection of resources that are appropriate for the given motif (a certain

class of sets of measure zero for the typicality motif, certain methods of predic-

tion for the unpredictability motif, and certain modes of compression for the

incompressibility motif), and

3. a criterion of success, a condition or set of conditions that must be satisfied in

order for a sequence to be counted as non-random according to the definition.

18Recall that the definition that results from the former option is computable randomness, while
Schnorr randomness results from the latter.
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Further, by varying the resources and the criterion of success of a definition of ran-

domness, the result will be a range of definitions. More exactly, for a fixed definition

D with a given motif, as we vary the resources of the definition D , the correspond-

ing extension of the resulting definition changes—all other things being equal, if we

increase the resources of D , the resulting definition D ′ will be a stronger definition,

counting fewer sequences as random. Similarly, if we decrease the resources of D ,

the resulting definition D ′ will be a weaker definition, counting more sequences as

random. If instead of varying the resources of D we vary the criterion of success,

then the same phenomenon occurs; a more demanding criterion of success results in

a smaller extension of sequences that are counted as random, while a less demanding

criterion of success results in a larger extension of sequences that are counted as

random.

Thus, when we sharpen the prevailing intuitive notion of randomness, we arrive

at various schemata, which, depending on they are is filled in, give different formal

definitions of randomness. Yet when Turing sharpened the intuitive notion of human

computability, he arrived at a concept with a definite extension (at least according

to the standard account of Turing’s analysis, which I am not challenging here).19

19One might object here that we can give a schema of definitions of computability given in terms
of, say, oracle computability or the subrecursive hierarchies. But such a schema did not arise in the
course of attempting to make more precise our informal notions of computability with the aim of
justifying a claim of extensional adequacy. This is the crucial difference. Of course, the D-advocate
might be able to provide a sharpening of our informal ideas of randomness that does not yield a
schema, but rather a concept with a fixed extension. In light of the data I present in the next
chapter, I think that such a sharpening is not forthcoming.
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11.4.2.1 Difference 3: The Role of Extensional Adequacy

The last difference between the CTT-JT and the MLCT-JT concerns the purposes

an extensionally adequate definition might serve. First, let’s consider the purposes

an extensionally adequate definition of computability can serve. Following the termi-

nology of Boolos, Burgess, and Jeffrey, we can distinguish between two primary uses

of the CTT, the “unavoidable” uses of the CTT and the “lazy” uses of the CTT.20

The paradigm example of an unavoidable use of the CTT is given by Turing

(and Church as well). In order to show that the Entscheidungsproblem, the problem

of finding an effective procedure that would determine whether a given first-order

formula is derivable from the axioms of first-order logic, has a negative answer, Turing

showed that there is no Turing computable procedure that could decide the truth

of statements of first-order logic. Then, appealing to Turing’s thesis, he concluded

that no effective procedure could decide the truth of statements of first-order logic.

In general, an unavoidable use of the CTT involves the replacement of “Ψ is not

Turing computable” with “Ψ is not effectively calculable”, where Ψ stands for some

predicate, set, procedure, etc.

The lazy uses of the CTT allow one to pass from an informal description of an

effective procedure to an index for a partial computable function. That is, instead of

deriving the desired partial computable function from, say, the initial functions, the

task of verifying that our informal description yields a partial computable function

is bypassed. The CTT thus functions here as an informal rule of inference in a proof:

One defines an intuitively computable function, and thus by the CTT, it follows that

20See [BBJ02], p. 136.
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this function is a partial computable function. Thus, there is some e such that φe

that computes the desired function, and φe is then used in the next steps of the

proof.

What about the purposes that an extensionally adequate definition of randomness

might serve? As it currently stands, the general theory of algorithmic randomness

does not make any “unavoidable uses” of any definition of randomness that is com-

parable to the use of, say, Turing computability in the proof of the negative solution

of the Entscheidungsproblem.21 That is, there is no proof in the general theory of

algorithmic randomness in which one shows that no Martin-Löf random sequence

satisfies some property and then further concludes that no intuitively random se-

quence satisfies that property (nor is there any proof in which one shows that every

Martin-Löf random sequence satisfies some property and further concludes that every

intuitively random sequences satisfies that property).

What about “lazy uses” of some definition of randomness such as Martin-Löf

randomness? Here, too, there does not appear to be a discernible loss. For instance,

there is no rule of inference that allows one to pass from an intuitively random

sequence to, say, a Martin-Löf random sequence, and reasonably so, for if my account

21There is perhaps one exception: Chaitin proves that no reasonable theory of arithmetic (i.e.
on that is computably axiomatizable and extends Robinson’s Q) can prove more than finitely many
statements asserting true values of Ω (of the form “Ω(n) = 1” or “Ω(n) = 0”). Chaitin claims of
this result that it shows there are truths of arithmetic that are “true for no reason”, the rationale
being something like this: since Ω is random, its bit values are akin to the tosses of an unbiased
coin. Moreover, almost all of these truths are unprovable in arithmetic, and therefore these are
seemingly random facts that are true for no reason. Admittedly, there are many worrisome steps in
this argument (and it’s far from clear how to make this argument respectable), but it appears that
one step that is needed is to pass from the Martin-Löf randomness of Ω to the intuitive randomness
of Ω, so that we can conclude that “its bit values are akin to the tosses of a fair coin” or something
like that. Thus the only unavoidable use of the MLCT that I can find comes in an argument that
is already deeply problematic apart from this implicit use of the MLCT.
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is correct, such a rule of inference would not be completely reliable. For as I argue in

the next chapter, there are some contexts in which Martin-Löf randomness licenses

all of the attributions of randomness and non-randomness, and in these contexts, this

rule of inference would be completely reliable, but outside of such contexts, reliability

is not guaranteed.
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CHAPTER 12

THE CALIBRATIVE AND LIMITATIVE ROLES OF RANDOMNESS

12.1 Introduction

Thus far we have established that the D-advocate must face the Justificatory

Challenge: she must provide a sharpening of the prevailing intuitive conception of

randomness in order to establish the correctness of the definition D . In addition,

in the previous chapter I argued for two points that are pertinent to the present

discussion. First, I argued that it is doubtful whether the D-advocate can meet this

challenge, as there seems to be no principled choice of the legitimate disqualifying

properties and the properties of randomness. Second, I argued that there are no

discernible purposes for a definition of randomness that can only be fulfilled by an

extensionally adequate definition. While these two points shouldn’t be taken to

provide particularly strong evidence for the No-Thesis Thesis, the claim that no

definition of randomness that has a definite, well-defined extension can capture the

prevailing intuitive conception of randomness, they do provide an important first

step towards the No-Thesis Thesis.

This is not the fully story on the No-Thesis Thesis, however. For in this chapter, I

discuss two roles for definitions of randomness, each of which can be successfully filled
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by multiple definitions of randomness. Further, as I argue, the fact that multiple

definitions of randomness can successfully fill these two particular roles gives us good

reason to hold not only that the D-advocate cannot meet the Justificatory Challenge,

but also to accept the No-Thesis Thesis.

The two roles that I discuss here are what I call the calibrative role of randomness

and the limitative role of randomness. Roughly, a definition D fills the calibrative

role if and only if there is some notion of “almost-everywhere” typicality T occurring

in classical mathematics such that the D-randomness of a sequence is necessary and

sufficient for that sequence to be T -typical (where these notions of typicality are

specified in the next section). Significantly, there is no single definition of randomness

that is coextensive with all the various notions of almost-everywhere typicality that

one encounters in classical mathematics. This already strongly suggests that no single

definition can capture everything that mathematicians have held to be significant

about the notion of randomness.

This is further confirmed by the fact that many definitions of randomness fill

what I call the limitative role of randomness ; such definitions illuminate an interest-

ing phenomenon, the indefinite contractibility of the notion of absolute randomness.

Broadly speaking, that the notion of absolute randomness is indefinitely contractible

means that for every extension E of sequences that purportedly contains all abso-

lutely random sequences, there is some X ∈ E that is not absolutely random, where,

following a suggestion of Myhill’s, a sequence is absolutely random if and only if it

satisfies no property that is (i) satisfied by only measure zero many sequences and
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(ii) is definable without parameters in the language of set theory.1 By means of the

various definitions of randomness, we can systematically study this phenomenon of

contractibility. In fact, this phenomenon allows us to diagnose the source of the

various putative disqualifying properties discussed in the previous two chapters.

An important feature of these two roles is that a definition can successfully fill

one of these roles (or both) without capturing the prevailing intuitive conception

of randomness. What’s more, the fact that multiple definitions of randomness can

successfully fill these roles gives us reason to accept the No-Thesis Thesis, or so I

argue.

The remainder of the chapter will proceed as follows. In Section 12.2, I introduce

the calibrative role of randomness, while in Section 12.3, I consider two objections

concerning the significance of the calibrative role as I’ve characterized it. Next, in

Section 12.4 I introduce the limitative role of randomness. Lastly, in Section 12.5,

I present my full argument for the No-Thesis Thesis, based on the that the fact

that both the calibrative and the limitative roles are successfully filled by multiple

definitions of randomness.

12.2 The Calibrative Role

The first role that we will consider in this chapter is what I call the calibrative

role of randomness. Roughly, a definition D fills the calibrative role if and only

if there is some notion of “almost-everywhere typicality” (hereafter a.e.-typicality)

1We cannot formally define absolute randomness, but we can study the properties of a predicate
R satisfying certain general conditions that are necessary for absolute randomness, as discussed in
Section 12.4.
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occurring in classical mathematics such that all and only the D-random sequences

instantiate this notion of a.e.-typicality. To understand what this means, we have

a bit to unpack here. What is a notion of a.e.-typicality? What does it mean for

a sequence to instantiate a notion of a.e.-typicality? And what does it mean for a

notion of a.e.-typicality to occur in classical mathematics?

As a first pass at answering these questions, let us consider several examples

of the phenomenon in question. In particular, I invoke recent results concerning

the relationship between (i) a number of definitions of randomness and (ii) theo-

rems involving certain properties studied in classical mathematics that hold on a set

of measure one (theorems from such areas as analysis, ergodic theory, information

theory, and probability theory).2

Consider the following theorems of classical analysis, each of which concerns some

property that holds of almost every real number in [0,1], or equivalently, in a subset

of [0,1] of measure one:3,4

Theorem 1. For every non-decreasing real-valued function f : [0, 1] → R, f is

differentiable almost everywhere.

Theorem 2. For every real-valued function f : [0, 1] → R of bounded variation, f

2Most of the results discussed below are recent, with the exception of one, proved by Demuth
in [Dem75]. However, only recently has the significance of Demuth’s result been realized.

3Here we rely on the fact that every sequence in 2ω corresponds to a unique point in [0,1], while
every non-rational point in [0,1] corresponds to a unique member of 2ω.

4These theorems can be found in any standard textbook on real analysis, such as [Rud87] or
[Fol99].
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is differentiable almost everywhere.5

Theorem 3. For every integrable function f : [0, 1]→ R,

lim
r→∞

1

λ(Br(x))

∫
Br(x)

f(x)dx (12.1)

converges to f(x) for almost every x.6

Each of these theorems has the form

(∀f ∈ C )(∀a.e.x ∈ [0, 1])Φ(x, f),

where C is some collection of functions from [0, 1] to R, ∀a.e. is the almost-everywhere

quantifier, and Φ(x, f) is some formula of second-order arithmetic. Further, in each

of these cases, the set of real numbers for which the theorem holds is a set of measure

one; this is precisely what it means for a result to hold for almost every x ∈ [0, 1].

Such results are commonly glossed as follows: If we choose a point x ∈ [0, 1] at

random, then with probability one, the relevant property will hold for x; we might

also say that it is the typical behavior of points x ∈ [0, 1] for the each of the above

properties to hold at x, or that these properties hold of the random member of [0, 1].7

5f : [0, 1]→ R is of bounded variation if its total variation is finite. That is, the supremum of

nP∑
i=0

|f(xi+1)− f(xi)|

over all partitions P = {x0, x1, . . . , xnP
} of [0,1] is finite.

6This result is known as the Lebesgue differentiation theorem.

7I should emphasize that these glosses here are not, strictly speaking, formal, insofar as the
notions of “typicality” or “random point” are not given precise definitions.
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Such behavior is what I am referring to as almost-everywhere behavior.

Let us now make some further restrictions on the three instances of almost-

everywhere behavior given by Theorems 1-3. Instead of considering

C1 = {f : [0, 1]→ R : f is non-decreasing},

C2 = {f : [0, 1]→ R : f is of bounded variation}, and

C3 = {f : [0, 1]→ R : f is integrable}

in each of the above three theorems, let us restrict each collection Ci to just the

computable functions in each collection,8 then we have the following analogues of

Theorems 1-3:

Theorem 4 (Brattka, Miller, Nies, [BMN11]). z ∈ [0, 1] is computably random

if and only if z is a point of differentiability of every non-decreasing, computable,

real-valued function f : [0, 1]→ R.9

Theorem 5 (Demuth [Dem75]; Brattka, Miller, Nies, [BMN11]). z ∈ [0, 1] is Martin-

Löf random if and only if z is a point of differentiability of every computable, real-

valued function f : [0, 1]→ R of bounded variation.

8f : [0, 1]→ R is computable if (i) for every computable sequence of real numbers (xk)k∈ω, the
sequence f(xk)k∈ω is computable, and (ii) there is a computable function g : ω → ω such that for
every x, y ∈ [0, 1] and every n ∈ ω,

|x− y| ≤ 2−g(n) ⇒ |f(x)− f(y)| ≤ 2−n.

9The definition of computable randomness can be found in Section 2.5.2.1.
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Theorem 6 (Pathak, Rojas, Simpson, [PRS11]; Rute, [Rut11]). z ∈ [0, 1] is Schnorr

random if and only if for every L1-computable function f : [0, 1]→ R,

lim
r→∞

1

λ(Br(z))

∫
Br(z)

f(x)dx

converges to f(z).

More concisely, given a collection C of real-valued functions f : [0, 1]→ R, if C ∗

is the subset of C consisting of the computable members of C , Φ(z, f) says “f is

differentiable at z”, Φ′(z, f) expresses the relation given by (12.1) above, and Ci for

i = 1, 2, 3 are as above, then we have:

Theorem 4∗: (∀f ∈ C ∗1 )Φ(z, f) if and only if z ∈ CR.

Theorem 5∗: (∀f ∈ C ∗2 )Φ(z, f) if and only if z ∈ MLR.

Theorem 6∗: (∀f ∈ C ∗3 )Φ′(z, f) if and only if z ∈ SR.

These are quite surprising results, for the restriction of each of the classes of func-

tions in Theorems 1-3 to the computable real-valued functions yields not just three

properties that hold almost-everywhere, but three properties each of which is coex-

tensive with some definition of algorithmic randomness. Thus we have three distinct

notions of what we might call almost-everywhere typicality on our hands:

z is a.e.-typical1 if and only if (∀f ∈ C ∗1 )Φ(z, f);

z is a.e.-typical2 if and only if (∀f ∈ C ∗2 )Φ(z, f);

z is a.e.-typical3 if and only if (∀f ∈ C ∗3 )Φ′(z, f).

Combining the above three statements with Theorems 4∗, 5∗, and 6∗ yields
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z is a.e.-typical1 if and only if z ∈ CR;

z is a.e.-typical2 if and only if z ∈ MLR;

z is a.e.-typical3 if and only if z ∈ SR.

There are a number of additional results along these lines,10 and it is plausible to

hold that even more will be established for other notions of a.e.-typicality that are

not equivalent to these three. But what is the significance of these results?

To answer this question, let us revisit the exemplary role of randomness. Recall

that in Chapter 9 we discussed the exemplary role of randomness, first formulated

by Jean Ville, who wanted to find a definition of randomness that would satisfy all of

the properties typically held by a sequence chosen at random (properties I referred to

as the R-properties). Based on my argument in Chapter 11, there does not appear

to be a single collection of properties that falls under the description “the properties

typically held by a sequence chosen at random”, as there seems to be no principled

10There is an even stronger result along the lines of Theorems 4∗, 5∗, and 6∗ involving weak
2-randomness:

Theorem (Brattka, Miller, Nies [BMN11]). z ∈ [0, 1] is weakly 2-random if and only if every
almost everywhere differentiable computable function f : [0, 1]→ R is differentiable at z.

Recently, Miyabe has shown a number of similar results for weak randomness (defined above in
footnote 6); for instance:

Theorem (Miyabe [Miy12]). z ∈ [0, 1] is weakly random if and only if f(z) < ∞ for every non-
negative extended computable function f : [0, 1] → R ∪ {−∞,∞} such that f(x) < ∞ almost
everywhere.

There are a number of other almost-everywhere results from areas outside of analysis that pick out
classes of random sequences. For instance, an effective version of Birkhoff’s ergodic theorem holds
at all and only the Martin-Löf random points, as recently shown in [BDH+11] and [FGMN11].
Similarly, Hoyrup [Hoy12] has recently show that an effective version of the Shannon-Breimann-
McMillman Theorem from information theory holds for all and only the Martin-Löf random se-
quences.
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way to define such a collection ofR-properties, a conclusion that led Ville to conclude

that no definition could be given that satisfies the exemplary ideal.

We now have another reason to hold that there no single collection of properties

falling under the description “the properties typically held by a sequence chosen at

random”: there are multiple choices of such properties that yield definitions of ran-

domness that capture certain instances of a.e.-typicality occurring in classical math-

ematics. We thus have something along the lines of a restricted exemplary role. For

each definition D that is coextensive with a notion of a.e.-typicality, D-randomness

exemplifies the degree of randomness needed for a given almost-everywhere property

to hold. Thus, while we cannot specify a complete set of R-properties, properties

that hold of all and only the sequences chosen at random, for a given notion of a.e.-

typicality T , there is some collection of properties, the RT properties, such that X

exemplifies T -a.e.-typicality if and only if X satisfies all the RT -properties.

This phenomenon suggests a research program that is already under way, namely

to classify various notions of a.e.-typicality in classical mathematics according to the

corresponding definition of randomness. While a number of results along these lines

have been established (as discussed above), there is still much work to be done in this

direction—for each result in classical mathematics involving an almost-everywhere

quantifier (where the notion of almost-everywhere is in understood in the sense of

measure, and not, say, in the sense of Baire category), one can investigate the degree

of randomness necessary and sufficient for the result to hold effectively. Thus we have

an analogue of reverse mathematics, a program that one might refer to as reverse
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randomness.11,12

12.3 Two Objections

Before we consider the limitative role, there are two objections to the calibrative

role as I’ve formulated it above. The first objection is directed towards the notions

of a.e.-typicality that the various definitions purportedly capture, while the second

objection involves a worry that the various definitions of randomness, and the cor-

responding notions of a.e.-typicality, are artificial, and thus these definitions do not

capture what mathematicians consider to be significant truths about randomness.

12.3.1 Objection 1: Bad Company for Notions of a.e.-Typicality

Let Ψ(X) be the formula X = X, which holds for almost every sequence in 2ω,

because it holds for every sequence in 2ω. Why isn’t the collection of sequences

satisfying Ψ, namely 2ω, counted as fulfilling the calibrative role? Specifically, the

objection is that I haven’t said enough about what counts as an admissible notion

of a.e.-typicality (i.e. one that is potentially coextensive with a definition of random-

ness), and without some constraint on the notion of a.e.-typicality, my account runs

the risk of counting all sorts of pathological notions as admissible.

This objection can be seen as an analogue of the Bad Company Objection to the

11This designation is due to Laurent Bienvenu.

12I think it is reasonable to ask whether the correspondence between notions of a.e.-typicality
and definitions of randomness can be formalized within a sufficiently rich formal system, such as
one equipped with a generalized quantifier that can be interpreted as quantifying over all and only
the D-random sequences for different definitions of randomness D . There is the potential for some
interesting formal work to be done here.
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use of abstraction principles such as Hume’s Principle to establish that all arithmeti-

cal truths are conceptual truths. Just as one might object that Hume’s Principle

cannot underwrite the introduction of new concepts due to the fact that it is too

closely related to certain unacceptable abstraction principles, one might object that

the notions of a.e.-typicality cannot be used to secure the various definitions of ran-

domness as capturing significant truths about the concept of randomness since these

notions of a.e.-typicality are too closely related to, say, the notion of typicality given

by Ψ, a notion that clearly captures no significant truths about the concept of ran-

domness.

One initial response is to rule out such formulas as X = X from defining a notion

of a.e.-typicality on the grounds that a notion of typicality that counts every sequence

as typical (so that the corresponding notion of atypicality counts no sequence as

atypical) is an odd notion of typicality. But what exactly is odd about such a

notion, and why should the oddness of a notion of typicality give us grounds for its

disqualification?

Perhaps one might further appeal to intuitive considerations. Consider everyday,

informal uses of the predicate “x is typical”: “the typical American family”, “the

typical income”, “the typical interview questions”, etc. We don’t think that the

typical American family is just any American family, that the typical income is just

any income, and that the typical interview questions include all questions that have

been or might be asked at an interview. That is, in each of these cases, the predicate

“x is typical” picks out a proper subcollection of the domain in question.

But surely this doesn’t imply that every use of “x is typical” picks out a proper
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subcollection of the domain in question. For instance, if all of the members of a given

domain D are indistinguishable relative to some property (or collection of properties)

that is shared by all members of the domain, then “the typical x” would apply to all

members of D. It’s not clear what is problematic in such a case.

Let us consider a third, more promising approach. For certain purposes, a notion

of typicality that is satisfied by every object in a given domain might be interesting or

even useful. But for many mathematical purposes, a notion of typicality that counts

all sequences as typical is neither interesting nor useful; there are many properties

that are of interest to mathematicians but which do not hold of every object in a

given domain, but only of every sequence in a large subset of the domain. In some

cases, this notion of largeness is given in terms of Lebesgue measure (i.e., the property

of having Lebesgue measure one), while in other cases, it is given in terms of Baire

category (i.e., the property of being comeager).13 Further, it is the former variety of

typicality, the measure-theoretic variety, that are of studied in classical probability

theory and statistics.

The notions of a.e.-typicality discussed in 12.2 are all of the former variety: each

holds for measure one many sequences, and fails to hold for uncountably many se-

quences. These are the notions of typicality that are relevance to the calibrative role;

not even notions of typicality given in terms of Baire category are relevant to the

calibrative role of randomness. This is because the most basic laws of probability,

such as the Law of Large Numbers, don’t hold of sequences that are typical in the

13Recall that a subset of a topological space with a countable dense set is meager if it is the
union of nowhere dense sets, and a set is comeager if its complement is meager.
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sense of Baire category.

Note that even with this restriction to notions of typicality that fall under the

purview of classical probability theory and statistics, one can still cook up a number

of gerrymandered sets of measure one (even ones definable in second-order arith-

metic without parameters) that should not be considered legitimate notions of a.e.-

typicality. To rule out these gerrymandered notions of a.e.-typicality, one might

further require that admissible notions of a.e.-typicality must exclude all non-normal

sequences, where a sequence X is normal if for every finite binary sequence σ, the

limit of the relative frequency of the occurrence of σ in X as a subword is 2−|σ|.14

This too is not an unreasonable requirement, given that the collection of normal

sequences has a nice algorithmic characterization, as the collection of sequences that

are invariant under all place selections computable by a finite state automaton.15 Ad-

ditionally, nearly all of the currently available definitions of algorithmic randomness

satisfy this requirement.

One notable exception is Kurtz randomness, introduced back in Section 11.2.

The problem is that the collection of Kurtz random sequences includes all weakly

1-generic sequences,16 which fail to satisfy even the most basic laws of probability,

14Following the notation of [MR06], for a finite sequences σ, τ ∈ 2<ω, occσ(τ) is the number of
times that σ occurs as a subword of τ , and freqσ(τ) := occσ(τ)/|τ |. Then X ∈ 2ω is normal if for
every σ ∈ 2<ω,

lim
n→∞

freqσ(X�n) = 2−|σ|.

15This remarkable result is one of the earlier results in the theory of algorithmic randomness,
proved by V.N. Agafonov in [Aga68]. One might even hold that this is the first result in the project
of reverse randomness: a notion of algorithmic randomness, the collection of sequences invariant (in
von Mises’ sense) under selections computable by finite state automata, is necessary and sufficient
for a notion of a.e.-typicality occurring in classical mathematics, namely, normality.

16A sequence X ∈ 2ω is weakly 1-generic if and only if for every X meets every dense Σ0
1 subset
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such the Law of Large Numbers. Kurtz randomness presents an odd case, since it

can be seen as the melding of two notions of typicality discussed above, typicality in

the sense of Lebesgue measure and typicality in the sense of Baire category.

But we should exercise further caution. Including normality as a necessary con-

dition for any admissible notion of a.e.-typicality is only a viable option if we’re

interested in formalizing unbiased randomness (so that we consider our sequences as

produced by the repeated tosses of an unbiased coin), as there are many notions of

biased random sequences, some much more well-behaved than others, but most of

which are incompatible with normality.17 These are still measure-theoretic notions

of typicality; they just aren’t given in terms of the Lebesgue measure.

For the purposes of studying the calibrative role of randomness, one need not

precisely delimit the notions of a.e.-typicality that are admissible for the purposes

of calibrating the amount of randomness necessary and sufficient for such typicality

to be instantiated. We’ve already seen a number of notions of typicality that aren’t

admissible (notions that count every sequence at typical, notions given in terms of

Baire category) and a number of notions of typicality that are (each of which is a

measure-theoretic notion of typicality).

The mathematician is not left without direction as to how to study this calibra-

tive role; he only needs to grab an analysis textbook or a treatise on probability to

find notions of a.e.-typicality that can be calibrated by various notions of random-

of 2ω. Since the complement of every Π0
1 subset of 2ω is a dense and Σ0

1, it follows that every weakly
1-generic sequence is Kurtz random.

17For more on notions of randomness with respect to biased measures, see the mathematical
portion of this dissertation.
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ness. What’s more, the examples of this phenomenon that we already have are not

jeopardized by gerrymandered notions of typical; Martin-Löf randomness, Schnorr

randomness, and other definitions really do appear to capture significant truths about

randomness.

12.3.2 Objection Two: The Artificiality Problem

The second objection that we will consider here is that these notions of random-

ness, and the associated notions of a.e.-typicality, are ad hoc, artificial notions and

as such, they are not relevant to understanding the notion of randomness.

An objection along these lines is provided by Michiel van Lambalgen in his disser-

tation, “Random Sequences”. Articulating a view consonant with my own regarding

the possibility of a correct definition of randomness, he writes,

As regards the interpretation of statistical tests, the very generality of
Martin-Löf’s definition presents a problem. There is a glaring contrast
between the careful, piecemeal discussion of statistical tests in the litera-
ture [. . . ] and Martin-Löf’s sweeping generalisation. It seems to me that
there is no use in trying to establish once and for all all properties of ran-
dom sequences if we cannot survey this totality and if there are no general
arguments for the choice of a particular class of properties. In this case,
these arguments would have to be supplied by recursion theory. Now
the prospects for such general arguments look bleak: without too much
effort we could devise several alternatives to the definitions proposed by
Martin-Löf and Schnorr ([Lam87], p. 92).

While I mostly agree with van Lambalgen here,18 this is the extent of our agreement

18One point of disagreement: it’s unclear to me that van Lambalgen’s supposed ability to devise
alternatives to Martin-Löf randomness and Schnorr randomness has much of a bearing on the
possibility of identifying the correct definition of randomness. That is, it’s not the mere presence of
multiple definitions of randomness that should be troubling to the MLR-advocate (or the D-advocate
for any definition D). Thus I take my argument to be an improvement of van Lambalgen’s insofar
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on the matter. For van Lambalgen continues,

If these general arguments do not exist, the use of recursion theory may
be rather inessential here. After the discovery of a statistical law which
should be true of random sequences, we may determine its recursion theo-
retic structure; but this structure seems to be rather accidental. It is open
to doubt whether there really exists such an intimate connection between
randomness and recursion theory ([Lam87], p. 92, emphasis added).

If there really is no intimate connection between randomness and recursion theory,

then to study the notions of a.e.-typicality captured out by the different definitions

of randomness may be misguided, if not foolhardy. That is, without such an inti-

mate connection, there’s no reason to think that the definitions of randomness pick

out classes sequences that are of interest to anyone but the computability theorists

who were interested in these definitions to begin with. Let’s call this problem the

artificiality problem.

In response to this artificiality problem, I think it’s reasonable to hold that the

notions of a.e.-typicality discussed in this chapter are not artificial, as they result

from restricting certain theorems from classical mathematics to an effective subset of

the relevant set of objections. Moreover, it’s not as if we considered restricted versions

of these theorems and only then did we cook up definitions of randomness that are

necessary and sufficient for the notion of typicality referenced in these theorems.

That our definitions prove to be equivalent to these naturally-occurring notions of

typicality suggests that our definitions are far from artificial, and should be of interest

to mathematicians outside of the community of computability theorists (and even

as I account for why this multiplicity proves to be problematic for advocates of a given extensional
adequacy thesis.
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outside of the community of mathematical logicians).

In response to this, the “artificiality objector” might claim that I’m just brushing

the artificiality problem under the rug, so to speak, for the restriction of the a.e.

results to computable instances is itself an artificial restriction. For these definitions

of randomness, he might claim, don’t capture naturally occurring notions of typi-

cality, but rather, these notions of typicality only result from artificially restricting

certain almost-everywhere results from classical mathematics. Moreover, prior to the

restriction, there is no notion of typicality picked out by these results. For example,

as we saw, a point x ∈ [0, 1] is computably random if and only if x is a point of

differentiability of every computable, non-decreasing real-valued function. But in

the unrestricted setting, for every x ∈ [0, 1], we can always find a non-decreasing

real-valued function so that f is not differentiable at x. So if we consider the entire

class of non-decreasing real-valued functions, the points of differentiability for all

such functions is empty.19

It is true that the different notions of randomness are not explicitly identifiable

when we consider the almost-everywhere results in their unrestricted form. But to

hold that these definitions are therefore artificial due to the fact that they are only

19The “artificiality objector” might further object that the restriction to computable real-valued
functions is artificial because every computable real-valued function f : R → [0, 1] is already
uniformly continuous. But it turns out that the restriction to computable real-valued functions
is not the only restrict one can make. Recently, Hoyrup and Rojas have studied the class of
layerwise computable functions, a notion defined explicitly in terms of a universal Martin-Löf tests.
These functions are not necessarily uniformly continuous, but more importantly, Rojas and Hoyrup
([HR09b], [HR09a]) show that the collection of layerwise computable functions on a computable
probability space is coextensive with the collection effectively measurable real-valued functions on
that space (an effectivization of a very natural notion from analysis, that of a measurable function).
Connections between randomness and other notions of computability for real-valued functions have
been and continue to be explored.
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become relevant once we restrict the class of properties that hold almost everywhere

to some nicely definable class is to dismiss as artificial many of the insights provided

by the study of the effective content of classical mathematics over the last sixty

years.20 For much fruitful research in computable algebra, computable model theory,

computable analysis, and varieties of constructive mathematics has been carried out

by considering theorems of classical mathematics, restricting the relevant objects to

some nicely definable class, and studying the extent to which the theorems still hold

true in these restricted settings. In many cases, in this restricted setting, additional

information about the objects in question is uncovered, information which likely

would not have been uncovered in the unrestricted setting.21

I submit that the notions of typicality associated with almost-everywhere theo-

rems, which are only apparent when we consider restricted versions of these theorems,

should be counted among the additional information that is uncovered by restricting

to the effective setting. Taken in the context of this larger project of unearthing

the effective content of classical mathematical theorems, this seems to be far from

artificial. In fact, Kolmogorov seemed to anticipate this very role, writing,

The notions of [algorithmic randomness] in their application to infinite
sequences make possible some very interesting research that, although it
is not necessary from the point of view of the foundations of probability,
may have a certain significance in the study of the algorithmic aspect of
mathematics as a whole ([Kol83], p. 217).

This is precisely what I take the calibrative role to deliver for us: to help us bet-

ter understand the effective content of almost-everywhere theorems from classical

20For a brief survey of the history of work in effective mathematics, see [Har98], pp. 5-7.

21For examples of this phenomenon, see the many selections in [EGN+98a] and [EGN+98b].
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mathematics. In this respect, the definitions are far from artificial.

12.4 The Limitative Role

The second role of randomness that is successfully filled by multiple definitions

of randomness is the limitative role of randomness. To understand this role, we need

to consider an approach to defining randomness suggested by John Myhill in a letter

he wrote to Arthur Kruse in 1963.22

In his letter, Myhill suggests an intensional approach to randomness, one “not

definable in usual mathematical terms” (Kruse p. 321). Towards this end, Myhill

provides the following axioms of the notion of randomness, where λ is the Lebesgue

measure on 2ω and R(X) is a predicate on 2ω with the intended interpretation “X

is random”:

(R1) λ({X : R(X)} = 1;

(R2) If λ({X : Φ(X)} = 1 then (∀X)(R(X)→ Φ(X)), where Φ is a parameter-free

formula in the language of set theory with one free variable X.

Moreover, Myhill allows the formulas Φ in (R2) to contain the predicate R, he writes

the cryptic remark, “The ‘circularity’ of the schema above with [R] allowed to appear

in Φ is quite justified if we are convinced that [R] belongs to a new order of ideas,

entirely outside the set-theoretic order” ([Kru67], p. 321).23

22Kruse provides the text of Myhill’s letter in his article, “Some Notions of Random Sequence
and Their Set-Theoretic Foundations” [Kru67].

23Myhill further notes that there are strong consequences to allowing R to occur in the formulas
Φ in (R2): For instance, if there is some predicate R satisfying these two axioms, then there can

372



Thus, Myhill’s axioms can be considered as axioms for the notion of absolute

randomness, a notion that lies “entirely outside the set-theoretic order”.24 But how

is this notion of absolute randomness related to the notions of randomness that we’ve

considered here? My claim is that the various definitions of randomness that we’ve

considered here, as well as many others that we haven’t considered, illustrate the

indefinite contractibility of the notion of absolute randomness. But what does it

mean to say that the notion of absolute randomness is indefinitely contractible?

12.4.1 Indefinite Contractibility of the Concept of Absolute Randomness

To understand the claim that the concept of absolute randomness is indefinitely

contractible, we first need to consider what it means for a concept to be indefinitely

extensible, a phenomenon that has been well-studied in the philosophy of mathe-

matics. As a first pass, let’s consider the characterization of indefinitely extensible

concepts provided by Michael Dummett, who writes,

[an] indefinitely extensible concept is one such that, if we can form a defi-
nite conception of a totality all of whose members fall under the concept,
we can, by reference to that totality, characterize a larger totality all of
whose members fall under it ([Dum96], p. 441).

be no definable well-ordering of the continuum, and thus V 6= L. For if there is a definable well-
ordering of the continuum, then let X be the least random sequence in this well-ordering. The set
(0, 1)\{X} is a definable set of measure one, and thus by (R2), it contains every random sequence,
contradicting the fact that X is not in this set. Concerning this result, Myhill writes, “This strikes
me as very pleasant; it may have the reverse effect on you” ([Kru67], p. 321).

24This isn’t the only approach to defining absolute randomness. For instance, one can study
a notion of absolute randomness given in terms of ordinal-definable sets of measure one, a notion
shown to be consistent by Solovay in [Sol70]. See also [DKUV03].
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That is, the collection of objects falling under an indefinitely extensible concept

cannot be formed into one single totality.

To make Dummett’s characterization more precise, let us distinguish between two

kinds of indefinitely extensible concepts, weakly indefinitely extensible concepts and

strongly indefinitely extensible concepts.25

◦ Weak indefinite extensibility: Let O be a collection of objects, and let C

be a concept such that the objects that fall under C are members of O. The

concept C is weakly indefinitely extensible if for every set S consisting entirely

of objects falling under C, there is some x ∈ O such that (i) x /∈ S and (ii) x

falls under C.

Note that we obtain a larger totality S ′ of objects falling under C simply by adding

x to S. But there is one ingredient from Dummett’s characterization that is missing

from this definition: we don’t require that the object x be obtained “by reference

to the totality” S. According to Dummett, one passes from the original totality

S to the object x, and hence to the larger totality S ′ by means of a “principle of

extension”, or what Russell calls a “self-productive process” (references). One way

to cash this out is to require that there be a function f that maps S to some object

xS not contained in S but which falls under C. Then S ′ = S ∪ {f(S)} is the larger

totality, all of whose members fall under C. Thus we have:

◦ Strong indefinite extensibility: Let O be a collection of objects, and let C

be a concept such that the objects that fall under C are members ofO. The con-

cept C is strongly indefinitely extensible if there is some function f : P(O)→ O
25I’ve borrowed this definition from [SW06], p. 266, fn. 8.
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such that for every set S consisting entirely of objects falling under C, f maps S

to some x ∈ O such that (i) x /∈ S and (ii) x falls under C.

Let us consider several examples.26

The paradigm example of an indefinitely extensible concept is the concept of

ordinal number. To see that the concept of ordinal number is indefinitely extensible,

let S be a definite collection of ordinal numbers, and let S ′ be the downward closure of

S under ≤, so that α ∈ S ′ if and only if there is some β ∈ S such that α ≤ β. Clearly,

S ′ is an ordinal. Now if we let γ be the order type of S ′, it follows that S ′∪{γ} is an

ordinal; let γ′ be its order type. It follows that γ′ /∈ S ′. Other standard examples of

indefinitely extensible concepts are the concept of non-self-membered set (since by

the proof of Russell’s paradox, for any collection S of non-self-membered sets, we can

define a non-self-membered set, namely S itself),27 and the concept of cardinality

(since given a set S of cardinal numbers, we can define a new set S ′ by replacing

each κ ∈ S with a set of size κ, and then forming the powerset of S ′, thus yielding a

set with cardinality larger than any cardinal in S).

Now, let us consider indefinitely contractible concepts. In the introduction of

this chapter, I loosely characterized the indefinite contractibility of a concept C as

follows: for each definite extension E that purportedly contains all of the objects

falling under C, there is some object X ∈ E such that there are grounds for holding

that X should not be counted among the objects falling under C. Let us now attempt

26These examples, and others, can be found in [SW06] and [Wri10].

27As noted by Crispin Wright, this example also shows that the concept of set is also indefinitely
contractible, since for any set S, we can consider the set of non-self-membered sets in S, which is
not a member of S.
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to make this more precise. As with the indefinite extensibility of a concept, we will

distinguish between weak and strong forms of indefinite contractibility.

◦ Weak indefinite contractibility: Let O be a collection of objects, and let

C be a concept such that the objects that fall under C are members of O (but

not all members of O necessarily fall under C). Then the concept C is weakly

indefinitely contractible if for every set S containing all of the objects falling

under C, there is some x ∈ O such that (i) x ∈ S and (ii) x does not fall under

C.

Just as a concept is weakly indefinitely extensible but not strongly indefinitely

extensible in the absence of a principle of extension, which allows one to define a

new totality in terms of the initial totality, a weakly indefinitely contractible concept

need not have a principle of contraction. Such a principle allows one to pass from

a totality containing all of the objects falling under C to a sub-totality containing

objects falling under C. As with principles of extension, we will think of a principle

of contraction as being in terms of a function:

◦ Strong indefinite contractibility: Let O be a collection of objects, and let

C be a concept such that the objects that fall under C are members of O (but

not all members of O necessarily fall under C). Then the concept C is strongly

indefinitely contractible if there is some function f : P(O) → O such that

for every set S containing all of the object falling under C, f maps S to some

x ∈ O such that (i) x ∈ S and (ii) x does not fall under C.
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The salient difference between indefinitely extensible concepts and indefinitely con-

tractible sequences is this: if we are trying to define a totality of all and only those

objects that fall under a concept C, whereas if C is indefinitely extensible, then we

will be systematically prevented from defining a definite totality containing all of the

objects falling under C, if C is indefinitely contractible, then we will be systemat-

ically prevented from defining a definite totality containing only the objects falling

under that concept.

Now, why should we think that the concept of absolute randomness is indefinitely

contractible? Let D be a definition of randomness such that ext(D) is a definite col-

lection of sequences that purportedly contains all of the absolutely random sequences.

If we were to show that there is some set S ⊆ 2ω of measure zero, definable in a

parameter-free way in some language that is interpretable in ZFC, such that X is

contained in S, we would thereby establish that X not absolutely random. Further,

if we could show this for every set of measure one that purportedly contains all

absolutely random sequences, we would thereby show that the concept of absolute

randomness is weakly indefinitely contractible. Still further, if we could show that

for every E ⊆ 2ω of measure one, one can define a sequence X 6∈ E in terms of

E , we would thereby establish the strong indefinite contractibility of the concept of

randomness.

Unfortunately, it is well beyond the scope of this project to address the general

case for an arbitrary set of measure one. However, we can still consider a sufficiently

general case. Before we do so, let us first consider those measure one sets that have

been discussed in previous chapters, namely those measure one sets that are the
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extensions of the various definitions of randomness.

12.4.2 Indefinite Contractibility and Definitions of Algorithmic Randomness

Recall that in the course of laying out the Justificatory Challenge, I stated that for

every definition D of algorithmic randomness, there is some non-equivalent definition

D1 and a parameter-free formula Θ of second-order arithmetic such that

(i) ext(D1) ( ext(D),

(ii) Θ(2ω) := {X ∈ 2ω : Θ(X)} is a null set,

(iii) Θ(X) holds for some X ∈ ext(D), and

(iv) ¬Θ(X) holds for every X ∈ ext(D1).

Observe that by the definition of absolute randomness given in the introductory

remarks of this chapter, it follows that the sequence X ∈ ext(D) such that Θ(X)

holds is not absolutely random. Although we obtain a contraction of the notion

of absolute randomness simply by considering ext(D) \ {X}, in many cases, the

formula Θ does not merely hold of a single sequence, but potentially infinitely many

such sequences (even uncountably many in some cases). Thus, by (iv), D1 yields

a contraction of the notion of absolute randomness that is incompatible with the

property defined by Θ; that is, no D1-random sequence satisfies Θ.

But what exactly is this formula Θ? The answer to this question is not straight-

forward, as it depends, in part, on which definition D is under consideration. But

here is the important point: for each such formula Θ that one encounters in the lit-

erature on algorithmic randomness, one can show that there is a D-random sequence
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X such that Θ(X) holds either by explicitly or indirectly construction. I refer to this

phenomenon as the systematic generation of unruly instances.

To understand how unruly instances can be systematically generated, let’s first

consider how one might explicitly construct an algorithmically random sequence.

The key fact here is that each definition D of algorithmic randomness is such that,

in order for a sequence X to be counted as D-random, X must satisfy a countable col-

lection of requirements, where these requirements can often be specified computably

or given as a collection of computably enumerable conditions. Thus, by means of

an elaborate construction (sometimes using the priority method, but often using

techniques specific to the given requirements), one can explicitly build a sequence

X satisfying the collection of requirements, thereby guaranteeing that X is counted

as D-random.28 Moreover, in many cases, one can satisfy the collection of require-

ments while simultaneously satisfying a formula Θ that has the properties described

above.29

Unruly instances can also be produced by an indirect construction, where an indi-

rect of a random sequence satisfying a given putative disqualifying property involves

applying a general procedure to a specific collection of random sequences, with the

result of this procedure being a single sequence satisfying the property in question.

Allow me to illustrate this with several examples.

28This is precisely the approach that Wald took to prove the consistency of collectives and that
certain collectives are constructively definable, as discussed in Chapter 8.

29One such technique is discussed at length in Section 7.4 of [Nie09], entitled “How to build
a computably random set”. In addition, Ville’s Theorem is proved in a similar way: one builds
a sequence that is invariant under a countable collection of place selections while simultaneously
ensuring that it fails to satisfy the Law of the Iterated Logarithm.
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In Chapter 9, I mentioned that Martin-Löf proved the existence of a universal

Martin-Löf test, a uniformly computable collection {Û}i∈ω of effectively open subsets

of 2ω such that X ∈ 2ω is Martin-Löf random if and only if X /∈ ⋂i∈ω Ûi. Conse-

quently, every sequence in the complement of one of the Ûi’s is a Martin-Löf random

sequence. Further, the complement of each Ûi is a Π0
1 class. One particularly useful

fact about Π0
1 classes is that certain basis theorems are true of Π0

1 classes, where a

basis theorem is a given by identifying some property Φ and showing that for every

Π0
1 class P , there is some X ∈ P such that Φ(X) holds. For instance, we have:

The Low Basis Theorem: Every Π0
1 class contains a sequence of low Turing

degree.30

The Hyperimmune-Free Basis Theorem: Every Π0
1 class contains a se-

quence has hyperimmune-free Turing degree.31

The Kreisel Basis Theorem: Every Π0
1 class contains a sequence of c.e.

Turing degree.32

Now since there is a Π0
1 class that consists entirely of Martin-Löf random sequences,

it follows that there is

- a low Martin-Löf random sequence,

30A sequence A has low Turing degree if the halting problem relative to A is Turing equivalent
to the halting problem: A′ ≡T ∅′. We also say that such sequences are low.

31A sequence A has hyperimmune-free Turing degree if every function computable from A is
dominated by a computable function.

32A sequence A has c.e. degree if there is some c.e. set W such that A ≡T W .
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- a Martin-Löf random sequence of hyperimmune-free degree, and

- a Martin-Löf random sequence of c.e. degree.

In each of these cases, the property in question only holds for a measure zero collection

of sequences, and thus it follows that such sequences are not absolutely random.

But what’s more interesting for our purposes is that each of these properties

arises by means of a forcing construction using Π0
1 subclasses of the original Π0

1

we started with.33 That is, we apply a certain general procedure (given by the

forcing construction) to a specific collection of random sequences (here a Π0
1 class of

random sequences), and the result is an individual sequence that satisfies a putative

disqualifying property.

Thus far, we’ve seen behavior that is consistent with weak contractibility of the

concept of absolute randomness. But it’s not clear that there is a uniform procedure

for producing unruly instances that is applicable for all currently available definitions

of randomness. That is, there appears to be no general principle of contraction,

but rather a variety of ways of contracting the extension of a given definition of

randomness.

This fact notwithstanding, there are instances in which a uniform procedure is

available for an interesting subcollection of definitions. One particularly interesting

example is provided by Chaitin’s Ω, discussed in Section 10.5.1. As discussed there,

one proves that Ω is incompressible by means of a diagonal construction: every pos-

sible witness to the compressibility of Ω is thwarted by a clever use of the Recursion

Theorem. But this result relativizes nicely: For every A ∈ 2ω, we can construct a

33For details, see [Nie09], pp. 57-60 or [DH10] pp. 77-82.
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version of Chaitin’s Ω that is relative to A, denoted ΩA, and by the same proof that

Ω is incompressible, we can show that ΩA is incompressible by Turing machines that

come equipped with A as an oracle.

Here’s the relevance of this result: If we start with the collection of Martin-Löf

randomness, which can be characterized as the collection of sequences that are not

compressible by a universal prefix-free Turing machine U , then we can define Ω in

terms of U :

Ω =
∑
U(σ)↓

2−|σ|.

Further, Ω ∈ MLR, as shown by the proof via diagonalization that Ω is incompress-

ible. But Ω is not absolutely random, since, for instance, it satisfies the property

of being Turing equivalent to the halting problem ∅′, a property only satisfied by

countably many sequences. Thus, to rule out all such sequences, one natural option

is to consider the collection of sequences that are Martin-Löf random relative to ∅′,

i.e. the collection of 2-random sequences. It follows that Ω /∈ 2MLR, and hence we’ve

contracted the notion of absolute randomness. However, 2MLR can be character-

ized as those sequences that are not compressible by a universal prefix-free Turing

machine equipped with ∅′ as an oracle. Again, we define

Ω∅
′
=
∑

U∅′ (σ)↓

2−|σ|,

and it follows that Ω∅
′ ∈ 2MLR. Thus we can contract the class of sequences,

relativizing our definition to ∅′′, thus yielding 3MLR. But Ω∅
′′ ∈ 3MLR, and so we

382



can further contract the collection of sequences.34 Thus, for every n, we can carry

out this procedure for nMLR, thus repeatedly contracting definitions of randomness

that are defined along levels of the arithmetical hierarchy.35

34Here are two ways to carry this out formally. For each n, we have nMLR ∩ ∆0
n+1 6= ∅ but

(n + 1)MLR∩∆0
n+1 = ∅, and thus it follows that the ∆0

n+1 sequences is a parameter-free collection
of sequences of measure zero, and thus contains no absolutely random sequences. However, we can
form by iteration the sequence Ω,ΩΩ,ΩΩΩ

, . . . , we have:

Ω ∈ ∆0
2

ΩΩ ∈ ∆0
3

ΩΩΩ ∈ ∆0
4

...

ΩΩ
. .

.
Ω

∈ ∆0
n+1

...

Similarly, for each n, we have
nMLR ∩ {X : X ≡T ∅(n)} 6= ∅

but
(n + 1)MLR ∩ {X : X ≡T ∅(n)} = ∅,

and thus it follows that the collection of sequences such that {X : X ≡T ∅(n)} is a parameter-free
collection of sequences of measure zero, and thus contains no absolutely random sequences. Then
using the facts that ΩA ⊕ A ≡T A′ and ΩA ⊕ A ∈ MLR if and only if A ∈ MLR, we can form by
iteration the sequence Ω,ΩΩ ⊕ Ω,Ω(ΩΩ⊕Ω) ⊕ (ΩΩ ⊕ Ω), . . . , and thus, if we set

S0 := Ω
Sn+1 := ΩSn ⊕ Sn

it follows that Sn ≡T ∅(n+1) for every n ∈ ω. Thus, we have two cases of the uniform generation of
unruly instances for a collection of putative disqualifying properties (being ∆0

n for some n ∈ ω or
being Turing-equivalent to ∅(n) for some n ∈ ω).

35Note that we have another difference between the definition of Turing computability and the
definition of Martin-Löf randomness. Whereas the collection of Turing computable functions is not
diagonalizable (as discussed in Section 11.4.1), there is a sense in which the collection of Martin-
Löf random sequences is diagonalizable. Recall that in Section 10.5.1 I outlined the proof that
Chaitin’s Ω is incompressible, which proceeds roughly as follows: every possible witness to the
compressibility of an initial segment of Ω is eventually thwarted, using the Recursion Theorem in
tandem with the fact that Ω encodes the information about all prefix-free Turing machines. Thus,
the incompressibility of Ω is secured by diagonalizing against all possible computations that witness
the compressibility of Ω. Thus, by means of this diagonalization, Ω is included among the random
sequences.
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This behavior, namely that we can contract measure one sets defined at various

levels of the arithmetical hierarchy, suggests that this contractibility can be uniformly

carried out for a collection of definitions of randomness defined in terms of resources

given by the levels of some hierarchy.

12.4.3 A More General Approach to Indefinite Contractibility

Suppose we consider a family of definition given in terms of some hierarchy that

occurs in mathematical logic, such as one of the various subrecursive hierarchies, the

arithmetical hierarchy, the hyperarithmetical hierarchy, the constructible hierarchy,

and so on. Let us consider a family of definitions of randomness with a fixed motif and

criterion of success, but vary the resources along one of these hierarchies. Suppose,

for instance, that our hierarchy H is indexed by some set I on which we have a

natural ordering ≤. Then we can write H = {Hα}α∈I , where Hα is the αth level of

H . Further, we can define a family of definitions {Dα}α∈I , where for each α ∈ I, Dα

uses as its resources all objects in H . Then one will be able to prove the following

five conditions, which I call the contractibility conditions :

(C1) For each α, β ∈ I, α ≤ β implies that ext(Dβ) ⊆ ext(Dα).

(C2) For each α, β ∈ I, α ≤ β implies that λ(ext(Dα) \ ext(Dβ)) = 0.

(C3) For each α ∈ I, no Dα-random sequence is definable in Hα.

(C4) For each β ∈ I and for each α < β, there is some Dα-random sequence that is

definable in Hβ.
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(C5) For each α, β ∈ I, α ≤ β implies that the set {X : X ∈ ext(Dα)} is definable

with parameters from Hβ.

From these five conditions, it follows that we can contract the extensions of the

various definitions defined at the various levels of the hierarchy H : Given α ∈ I, if

ext(Dα) purportedly contains all absolutely random sequences, then for any β > α,

by (C4), there is some Dα-random sequence X that is definable in Hβ. However, by

(C3), X cannot be Dβ-random, and hence X ∈ ext(Dα) \ ext(Dβ). By (C5), the set

S = {X : X ∈ ext(Dα) \ ext(Dβ)} is definable in Hβ, but by (C2), λ(S) = 0. Thus it

follows that X is not absolutely random. Lastly, by (C1) and the fact that X is not

Dβ-random, we have ext(Dβ) ⊆ (ext(Dα) \ {X}), yielding the desired contraction.

Thus we have a plethora of examples illustrating the indefinite contractibility

of the concept of absolute randomness. Moreover, we have seen that any family of

definitions of randomness defined in terms of resources from some hierarchy that

satisfies the contractibility conditions (C1)-(C5) above will thus be contractible.36

Summing up, we have seen that the various definitions of randomness fill the

limitative role by showing the extent to which every definition of randomness with

a definite, well-defined extension will inevitably count as random a sequence that is

ruled out as non-random by stronger definitions of randomness. This phenomenon

is not well-understood; there is much formal work to be done to better understand

the limitative role. That is, we can formally study the systematical generation of un-

36There is one last possibility to consider: we let D-randomness be given by the intersection of all
of the extensions of the definitions Dα given in terms of H = {Hα}α∈I . The problem is that if H
is some hierarchy that is definable in the von Neumann hierarchy, we can find stronger definitions of
randomness in terms of the von Neumann hierarchy. Further, if H is the von Neumann hierarchy,
then the intersection of the extensions of the definitions Dα will not be a set, and thus the resulting
definition will not be yield a well-defined, definite extension of random sequences.
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ruly instances, classifying the various ways in which one can produce such instances.

Moreover, the contractibility of a family of definitions the resources of which are

given by some hierarchy of resources has not been systematically studied. For in-

stance, the details of this phenomenon in various hierarchies, from the subrecursive

up through the set-theoretic, merits careful attention. The hope is that in studying

this phenomenon, we might better understand the very hierarchies in terms of which

we can define randomness.

12.5 Towards the No-Thesis Thesis

Let us conclude this chapter by returning to the No-Thesis Thesis. In the previous

chapter, we determined that the D-advocate must meet the Justificatory Challenge:

she must provide a sharpening of the prevailing intuitive conception of randomness

that is precise enough to block the claims of extensional adequacy made concerning

alternative definitions of randomness without undermining the claim of the exten-

sional adequacy of D . Further, I argued that there is no reason to hold that the

D-advocate can meet this challenge. In light of the data we’ve considered in this

chapter, I claim that we now have reason to hold that the D-advocate cannot meet

this challenge.

Recall that the D-advocate’s goal is to establish the correctness of D , that a

sequence is D-random if and only if it is intuitively random. If she were to establish

this, then we would be able to replace uses of “intuitively random sequence” with

“D-random sequence”, just as the CTT permits us to replace uses of “effectively

calculable number-theoretic function” with “Turing computable number-theoretic
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function”. However, one problem with this approach is that the collection of intu-

itively random sequences does not appear to be a well-defined, definite collection of

sequences, or at least the D-advocate hasn’t given us any reason to think that this

is the case. To further compound matters, in our discussion of the calibrative role,

we have seen that there are multiple definitions of randomness D1,D2, . . . such that,

for each Di, there are certain contexts in which we are justified in replacing uses of

the informal predicate “X is random” with the formal predicate “X is Di-random”.

There is no single definition that can capture each of these notions of a.e.-typicality.

Thus, it appears that no single definition can capture all of what mathematicians

have considered to be significant truths concerning the concept of randomness.

In addition, the fact that the various definitions of randomness all successfully fill

the limitative role of randomness further confirms the view that no single definition

of randomness is adequate for all purposes for which we might develop a definition of

randomness that yields a well-defined, definite collection of sequences. In particular,

each definition of randomness that we’ve considered, and in fact, any definition D

that is part of a family of definitions satisfying the contractibility conditions, can be

“contracted”: we will also be able to find a putative disqualifying property P that

is satisfied by some D-random sequence, and a stronger definition D ′ such that no

D ′-random sequence has P .

In spite of this evidence, one might continue to hold on to the hope that we

might one day establish some single definition of randomness as the correct one.

However, I think we have good reason to accept the alternative account that I have

offered here. There are specific contexts in which one definition of randomness D
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is appropriate for the task at hand, while all others are disqualified. But there are

contexts in which D is not the appropriate definition for the task at hand; rather,

some other, non-equivalent definition D ′ is the appropriate one. Further, on this

approach, we can bring our formal tools to bear on the analysis of the ways in which

one definition is appropriate in certain contexts (by studying how that definition fills

the calibrative role) and not appropriate for others (by studying how that definition

fills the limitative role). Thus on this approach, it is the multiplicity of definitions

of randomness, and not one single definition of randomness, that captures much of

what mathematicians have taken to be significant about the notion of randomness.
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[Kuč85] Antońın Kučera. Measure, Π0
1-classes and complete extensions of PA.

In Recursion theory week (Oberwolfach, 1984), volume 1141 of Lecture
Notes in Math., pages 245–259. Springer, Berlin, 1985.

394



[Kur81] Stuart Kurtz. Randomness and Genericity in the Degrees of Unsolvabil-
ity. PhD thesis, University of Illinois at Urbana-Champaign, 1981.

[Lam87] Michiel Van Lambalgen. Random Sequences. PhD thesis, University of
Amsterdam, 1987.

[Lev73] L. A. Levin. The concept of a random sequence. Dokl. Akad. Nauk
SSSR, 212:548–550, 1973.

[Lev10] Leonid A. Levin. Some theorems on the algorithmic approach to proba-
bility theory and information theory (1971 dissertation directed by A. N.
Kolmogorov). Ann. Pure Appl. Logic, 162(3):224–235, 2010. Translated
from the Russian original.

[Lin66] D.V. Lindley. Review: Richard von Mises, Hilda Geiringer, Mathe-
matical Theory of Probability and Statistics. Ann. Math. Statistics,
37(3):747–754, 1966.
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[ML66] Per Martin-Löf. The definition of random sequences. Information and
Control, 9:602–619, 1966.

395
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