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Introduction

The purpose of this talk is to delineate and respond to a specific
problem that has arisen in the context of a debate about the
adequacy of certain formalizations of the concept of randomness.

Certain definitions of randomness, which I call extensional
definitions of randomness, face a problem that I call the problem of
unruly instances:

For each such definition D , there is some collection U of objects
such that

(i) each object x ∈ U is D-random, but

(ii) there are grounds for holding that each x ∈ U should not be
counted as random (that is, random according to certain
widely held, pre-theoretic intuitions about the concept of
randomness).



Introduction, continued

That is, even though each x ∈ U is formally random, it is
disputable whether x should be counted as intuitively random, at
least according to certain ways of understanding what it means for
an object to be intuitively random.

I refer to these objects to as unruly instances of formal randomness.



Introduction, continued

As I hope to clarify, the problem of unruly instances is a problem
on two different approaches to understanding the various
definitions of randomness:

I The singular approach, which seeks to identify one definition
of randomness that captures the intuitive conception of
randomness; and

I The plural approach, according to which multiple
extensionally distinct definitions of randomness are necessary
to capture everything that mathematicians have held to be
significant about the notion of randomness.

However, as I will argue, only the plural approach can adequately
address the problem.



My goals for today

The goals of this talk are the following:

I to explain what is particularly problematic about these unruly
instances for both the singular and plural approaches;

I to briefly outline Borel’s account of accessible and inaccessible
objects in mathematics; and

I to bring Borel’s account to bear on the problem of unruly
instances.



Outline of the talk

1. Delineating the problem of unruly instances

2. Examples of unruly instances

3. Borel’s account of accessible and inaccessible mathematical
objects

4. Applying Borel’s account of accessibility



1. Delineating the problem of unruly instances



Extensional definitions of randomness

Before I explain the problem of unruly instances, I need to specifiy
the definitions for which this problem is a problem.

The formalizations of randomness that face this problem are what I
call extensional.

Roughly, a definition of randomness is extensional if it counts an
object as random if it satisfies certain properties that are satisfied
by the typical outcomes of some paradigmatically random process
(such as the repeated tosses of an unbiased coin).

By contrast, a definition of randomness is intensional if it counts
an object as random if it is produced by some paradigmatically
random process such as the repeated tosses of a fair coin.



Some restrictions

The extensional definitions of randomness that I will consider here
have the following properties:

1. The objects to which these definitions are applicable are
infinite binary sequences (i.e. members of 2ω).

2. Each definition D can formulated in terms of a countable
collection of properties {Φi}i∈ω, such that

I for each i ∈ ω, the set {X ∈ 2ω : Φi (X )} has Lebesgue
measure one, and

I X ∈ 2ω is D-random if and only if Φi (X ) for every i ∈ ω.

3. Each definition D yields a partition of 2ω into two classes, the
D-random sequences and the non-D-random sequences.



What’s the problem?

Why do unruly instances pose a problem for extensional definitions
of randomness?

The general worry is that these unruly instances might undermine
the claim of a definition of randomness to being an adequate
definition of randomness.



Definitional inadequacy

More precisely, the worry is that one might be justified in reasoning
as follows:

(1) Definition D counts as random some object with property P.

(2) Any object with property P should not be counted as random.

(3) Any definition of randomness that counts as a random a
sequence that should not be counted as random is not an
adequate definition of randomness.

(C) Therefore D is not an adequate definition of randomness.

Henceforth, let us refer to arguments of the above form as
definitional inadequacy arguments.



What counts as an unruly instance?

Definitional inadequacy arguments appear, at least implicitly,
scattered throughout the philosophical literature on algorithmic
randomness.

But what is often lacking in discussions of these arguments is a
general account as to what qualifies as an unruly instance.

Despite the lack of such an account, unruly instances still threaten
to undermine the claim of adequacy of the various definitions of
randomness on both the singular and the plural approaches to the
definitions of randomness.



The challenge for each approach

Let D be a fixed definition of randomness, and suppose that there
is an unruly instance x of D-randomness.

Singular approach: Those who hold that D captures the intuitive
conception of randomness must answer the question:

I How can D capture the intuitive conception of randomness
while counting x as random?

Plural approach: Those who hold that D is one of many definitions
that capture some mathematically significant random phenomena
must answer the question:

I How can D capture the mathematically significant random
phenomena while counting x as random?



2. Examples of unruly instances



Example 1: Normal sequences

For σ, τ ∈ 2<ω, let #σ(τ) denote the number of occurrences of the
string σ in the string τ .

For example, #101(01010110) = 2.

A sequence X ∈ 2ω is normal in base 2 if for every σ ∈ 2<ω,

lim
n→∞

#σ(X �n)

n
= 2−|σ|.

Further, X ∈ 2ω is absolutely normal if X is normal in base b for
every b ∈ ω.



Example 1: Normal sequences, continued

For many mathematical purposes, normal sequences are considered
to be sufficiently random.

For instance, in number-theoretic contexts, one finds the question
“Is π random?”, which is taken to mean “Is π is absolutely
normal?” or even “Is π normal in some fixed base b?”

Normality can be viewed as the weakest notion of algorithmic
randomness:

I X ∈ 2ω is normal in base 2 if and only if X is incompressible
by a lossless finite-state compressor (Becher, Heiber).

I X ∈ 2ω is normal in base 2 if and only if X is stochastic with
respect to selection by a finite state automaton (Agafonov).



Example 1: Normal sequences, continued

However, there are unruly instances of normal sequences, such as
Champernowne’s number, which is normal in base 2.

1101110010111011110001001101010111100110111101111 . . .

One can even construct a computable sequence that is absolutely
normal.



Example 1: Normal sequences, continued

However, there are unruly instances of normal sequences, such as
Champernowne’s number, which is normal in base 2.

1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 . . .

One can even construct a computable sequence that is absolutely
normal.



Example 2: Church stochastic sequences

An important definition in the development of algorithmic
randomness is what is nowadays referred to as Church
stochasticity.

The definition is due to von Mises and Church (1940).

X ∈ 2ω is Church stochastic if

(i) it satisfies the law of large numbers (i.e. has relative limiting
frequency of 0 and 1 equal to 1/2), and

(ii) every subsequence selected from X by a computable place
selection also satisfies the law of large numbers.



Example 2: Church stochastic sequences, continued

Church stochastic sequences are much more well-behaved than
normal sequences.

For instance, no computable sequence is Church stochastic.

Unruly instance: Ville proved that there is a Church stochastic
sequence that fails to satisfy the law of the iterated logarithm.

Such a sequence has more 0s than 1s in every initial segment, even
though in the limit, the relative frequencies of 0 and 1 both
converge to 1/2.



Example 3: Martin-Löf random sequences

Martin-Löf randomness is a notion of randomness given in terms of
computably enumerable statistical tests.

I To test the hypothesis that a given infinite sequence has
random origin (say, produced by the tosses of a fair coin), we
test the hypothesis at all levels of significance of the form 2−n.

I A sequence passes the test if it is not contained in at least one
of the critical regions.

I A sequence is Martin-Löf random if it passes all such tests.

Martin-Löf: this definition “satisfies all intuitive requirements”



Example 3: Martin-Löf random sequences, continued

Martin-Löf randomness captures multiple instances of
“almost-everywhere” phenomena from classical mathematics.

That is, for a number of theorems that assert that some condition
is true for almost every point in a given domain (i.e. measure one
many points), one can show that the result, suitably “effectivized”,
holds at all and only the Martin-Löf random points.

I Analysis: differentiability of computable real-valued functions
of bounded variation (Brattka, Miller, Nies).

I Ergodic theory: Birkhoff’s Ergodic Theorem with respect to
effectively closed classes.

I Information theory: an effective version of the
Shannon-McMillan-Breiman theorem (Hoyrup).



Example 3: Martin-Löf random sequences, continued

However, there are a number of unruly instances of Martin-Löf
random sequences:

I Chaitin’s Ω is a Martin-Löf random sequence that encodes the
halting problem and has a number of other strong properties
that seem to be incompatible with being random.

I ∆0
2 sequences: There are Martin-Löf random sequences that

are decidable in the limit by a trial and error procedure.

I Kučera-Gács: Every sequence is Turing reducible to a
Martin-Löf random sequence.



3. Borel’s account of accessible and inaccessible
mathematical objects



Borel’s Les Nombres Inaccessibles

In his 1952 monograph Les Nombres Inaccessibles, Émile Borel
provides an account of the distinction between accessible and
inaccessible mathematical objects.

His account is an interesting one that merits more attention than it
has received, but it also has some relevance for the topic at hand.



Borel on the science of the accessible

It seems to me that mathematicians as well, while
maintaining the full right to work out abstract theories
deduced from arbitrary non-contradictory axioms, have an
interest in distinguishing, among the objects of thought
which are the substance of their science, those which are
truly accessible, that is to say, have an individuality, a
personality, which characterizes them without ambiguity.

One is thus led to define in a precise manner a science of
the accessible and of the real, beyond which it remains
possible to develop a science of the imaginary and of the
imagined, these two sciences being able, in certain cases,
to lend each other mutual support. (Les Nombres
Inaccessibles, pp. ix-x, translation by Bagemihl)



Accessible vs. inaccessible numbers

Borel attempts to develop his “science of the accessible” by first
discussing accessible and non-accessible numbers:

When we say that a process has allowed us to define a
determinate integer, we mean that we set clear and
precise rules so that any mathematician knows which
integer we have defined and that two different
mathematicians, when speaking about this integer, know
that there is no misunderstanding between them, that is
to say they are certain that the number designated by the
letter n is the same for one as it is for the other. (Ibid.,
p. 1)



Some features of Borel’s account

Borel’s considers two notions of accessibility, relative accessibility
and absolute accessibility:

We have defined the relatively accessible numbers as
those which may have been or may be effectively defined
by any human, before humanity disappears [. . . ] (Ibid., p.
13)

Absolutely accessible numbers include all natural numbers, rational
numbers, algebraic numbers, and numbers that can be derived
from other accessible numbers (even by means of infinitary
operations).



Some features of Borel’s account, continued

Moreover, the boundary between accessible and inaccessible
objects is also inaccessible. For instance, concerning natural
numbers, Borel writes,

Our conclusion is that there are inaccessible whole
numbers, that is to say that they will never be achieved
by any human, but that by their very definition, we do
not know them and it is impossible for us to indicate the
point at which the integers are inaccessible, since this
limit is itself inaccessible. (Ibid., p. 4)



Accessible vs. inaccessible sets

For our purposes, Borel’s account of accessible and inaccessible
sets is particularly noteworthy.

First, the definition of an accessible set is very similar to that of an
accessible natural number.

We say thus that a set is accessible when it can be
defined in such a manner that two mathematicians, when
they are speaking of it, are certain that they are speaking
of the same set. (Ibid., p. 104)



Accessible vs. inaccessible sets, continued

However, there is an interesting additional wrinkle in Borel’s
discussion of accessible sets:

For a set to be accessible, we should not require that all
of its points are accessible, otherwise the continuum itself
would be considered as inaccessible and we could even
regard any infinite set as inaccessible, even if it is
countably infinite, since such a set contains points that
are, in fact, inaccessible. (Ibid. p. 104)

Thus, a set can be counted as accessible even if contains
inaccessible members.

Another example of such a set is the Cantor middle-third set.



A few remarks

More precisely, a mathematical object x is accessible if there is
some linguistic expression φ such that any competent user of the
expression φ knows that φ refers to x and not some other object.

There are many questions about Borel’s account that we’ll have to
set aside for now. (For instance, how does competence in using φ
lead to knowledge of the reference of φ?)

Note that Borel does not require that φ be some formal linguistic
expression.

Rather, given that Borel’s concern is with something along the
lines of human accessibility, it’s not unreasonable to consider φ as
being a natural language expression.



A few remarks, continued

Borel’s notion of accessibility can thus be seen as a weak notion of
definability, something along the lines of natural language
definability.

In his review of Borel’s book, the mathematician Bagemihl writes,

Borel’s notion of accessibility, although of heuristic
significance, seems too subjective, temporal, and, by
precluding intrinsically the possibility of delimiting the
realm of the accessible, vague, according to his own
standards, to “define in a precise manner a science of the
accessible and of the real.” (Review of Les Nombres
Inaccessibles, p. 409)

These weaknesses notwithstanding, Borel’s account can still do
some work for us.



4. Applying Borel’s account of accessibility



Unruly instances and Borel’s account

Now I’d like to consider the extent to which Borel’s account of
accessible and inaccessible objects can shed light on the problem of
unruly instances.

Specifically, it can help us answer the question: What counts as an
unruly instance?



Unruly instances and accessible null sets

In the first place, what the unruly instances that are identified in
the algorithmic randomness literature have in common is that each
belongs to a set of measure zero that is accessible in Borel’s sense.

That is, an unruly instance corresponds to a property that is both
rare (as only measure zero many sequences satisfy it) and
unambiguously describable.



Defining randomness in terms of null sets

As I discussed earlier, each extensional definition of randomness D
can be formulated in terms of a countable collection of properties
{Φi}i∈ω, such that

I for each i ∈ ω, the set {X ∈ 2ω : Φi (X )} has Lebesgue
measure one, and

I X ∈ 2ω is D-random if and only if Φi (X ) for every i ∈ ω.

Equivalently, we can consider the properties {¬Φi}i∈ω, so that
each ¬Φi defines a set of measure 0 (which I will hereafter refer to
as null properties).

If X satisfies ¬Φi , then it is disqualified from being counted as
D-random.



A modest sharpening

For a given definition D , formulated in terms of a countable
collection of null properties {¬Φi}i∈ω, an unruly instance of
D-randomness corresponds to an accessible null property ¬Ψ that
is not equivalent to any null property ¬Φi .

Of course, this gloss on unruly instances is unclear, insofar as it
draws upon Borel’s unclear notion of accessibility.



A difficulty for the singular approach

In the context of evaluating whether a definition of randomness is
intuitively adequate, this unclarity isn’t really a problem.

If our target in formalizing randomness is the collection of
intuitively random sequences, understood as the collection of
sequences that an ideal human would judge to be random, then
intuitively random sequences should avoid all humanly accessible
null sets.

But if Borel is correct that the boundary between accessible and
inaccessible objects is itself inaccessible, then there seem to be no
conditions under which we could recognize that a given definition
captures the intuitively random sequences.



What about the plural approach?

This difficulty is avoided on the plural approach to definitions of
randomness.

For on this approach, the adequacy of a given definition of
randomness is not determined by how well it matches up with
some pre-theoretic conception of randomness.

Instead, on the plural approach, adequacy is relative to certain
purposes.



Purposes

Different definitions of randomness serve different purposes: often
for a given purpose, there is a degree of randomness necessary to
carry out that purpose (in some cases, we can even show such a
degree is necessary and sufficient).

Disqualification is not an absolute notion; what might be
considered unruly instances with respect to one purpose might not
be considered as unruly instances with respect to another.



An example

Earlier we saw that Martin-Löf random sequences correspond
precisely to the points that satisfy Birkhoff’s ergodic theorem for
effectively closed classes.

The fact that some Martin-Löf random sequences are ∆0
2 has no

bearing on whether or not the above result holds.



However...

I think there’s much more to say on this matter.

In fact, Borel’s account of accessibility and inaccessibility, suitably
sharpened, may be of help to address the problem of unruly
instances on the plural approach to definitions of randomness.

This is still work in progress, but I think there is some promise to
this approach.



An agent-centric approach to randomness

It is helpful to think of a definition of randomness as being given in
terms of an agent who has a specific set of resources for testing
whether or not a given sequence is random.

For instance, Martin-Löf randomness corresponds to an agent who
only has access to computably enumerable statistical tests.

On this account, the set of ∆0
2 sequences is inaccessible to this

agent: her resources do not allow her to produce a test that is
passed only by non-∆0

2 sequences.



An agent-centric approach to randomness, continued

Similarly, the collection of normal sequences corresponds to an
agent with only very weak computational resources at his disposal
(roughly, those given by finite state automata).

Moreover, the singleton set consisting of Champernowne’s number
is inaccessible to this agent: his resources do not allow him to
recognize the pattern in Champernowne’s number, a pattern that
is obvious to us.

There’s still much to develop here, but such an account may help
us better understand why it is that a definition of randomness can
successfully fulfill some purpose despite the presence of unruly
instances.


