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Université Paris 7

LIAFA

Concepts of Genericity in Mathematics
Université Paris 7
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Introduction

The aim of this talk is to outline a logical approach to
arbitrary/generic objects in terms of two different effective notions
of typicality:

I effective randomness, and

I effective genericity.



Outline

1. Fine’s Account of Arbitrary Objects

2. Measure and Category

3. Effective Randomness and Effective Genericity

4. Effectively Typical Objects as Generic Objects



1. Fine’s Account of Arbitrary Objects



Motivating Fine’s account

In Reasoning with Arbitrary Objects, Kit Fine develops an account
of arbitrary objects with the aim of providing a “satisfactory
explanation” of certain inferences, most notably, universal
generalization.

Fine is particularly interested in providing a formal account of
arbitrary objects in which he can formalize inferences such as those
of the following form.

Let n be an arbitrary natural number.
...

Thus n has property P. But n was arbitrary, and thus
every natural number has P.



The principle of generic attribution

In Fine’s framework, arbitrary objects function as a kind of
variable, as each arbitrary object has a range of values.

Central to his account is what he calls the principle of generic
attribution (PGA): “each arbitrary object should have the
properties common to the individuals in its range.”

Naive formulation: For a property P, P holds of an arbitrary object
a if and only if P holds of every individual object in the range of a.



An initial problem

One problem with this naive formulation: If we choose the property
P to be “is an individual object,” then by the naive version of the
PGA, it follows that every arbitrary object is an individual object.

Fine’s solution: restrict PGA to hold only for generic properties.

I Properties such as “being an odd number” are generic.

I Properties such as “being an individual object” are not
generic.



The generic property problem

However, Fine does not precisely specify which properties are the
generic ones.

According to Fine, while we may not know in advance which
properties will lead to a contradiction (such as “being an individual
object”), many languages “of natural and independent interest”
only make use of generic predicates, so PGA will be applicable to
these languages.

Tennant’s response:

‘Being generic’ ought to be a decidable property of
conditions expressible in the language. Only then will the
principle of generic attribution have application of sure
axiomatic status.

Let us refer to this problem of identifying the generic properties as
the generic property problem.



An alternative approach

Regardless of the merits of Fine’s account, it cannot accommodate
all of the uses of generic or arbitrary objects in mathematics (as
Fine would readily admit).

It is not the case that every notion of generic object in
mathematics is intended to license the attributions of properties to
every object in a given domain.

With the examples that we will consider today, the
generic/arbitrary objects in question are

1. generic with respect to a specific collection of properties;

2. these properties do not hold of every element of the relevant
domain; but

3. they do hold of most elements in the domain.

I will motivate these examples as putative responses to another
version of the generic property problem.



2. Measure and Category



The basic picture

There are certain ‘typical’ properties that, although not satisfied by
every object in a given collection, are satisfied by most objects in
that collection.

These ‘typical’ properties are defined in terms of various notions of
largeness.

There are two notions of largeness that I will consider today, given
in terms of:

I measure;

I category.

For simplicity, let us restrict our attention to the space 2ω (and
sometimes [0, 1]).



Measure in 2ω

For σ ∈ 2<ω, we let JσK = {X ∈ 2ω : σ ≺ X}.

Then the Lebesgue measure on 2ω is defined by first setting

λ(JσK) = 2−|σ|

for all σ ∈ 2<ω and then extending λ to all measurable subsets of
2ω in the standard way.



Measure in 2ω (continued)

Let X ⊆ 2ω.

X is small with respect to measure ≈ λ(X ) = 0 (“X is a nullset”)

X is large with respect to measure ≈ λ(X ) = 1



Category in 2ω

Let X ⊆ 2ω.

I X is nowhere dense if the closure of X has empty interior.

I X is meager if it can be written as the countable union of
nowhere dense sets.

I X is comeager if X c is meager.

X is small with respect to category ≈ X is meager

X is large with respect to category ≈ X is comeager



The significance of measure and category

By means of the notions of measure and category, we can identify
certain properties that, although not universal, are “almost
universal.”

More specifically, for some property P, if we know that

{X ∈ 2ω : P(X )}

is large with respect to measure or with respect to category, then
although we are not justified in concluding that this property holds
for every member of 2ω, we are justified in holding that the failure
to satisfy P is atypical behavior for members of 2ω.



The significance of measure and category (continued)

This, in turn, gives us a degree of control over the exceptions to P.

For instance, in analysis it is common to identify two functions
whose values differ only on a set of measure zero.

Note, however, that even if one knows that the satisfaction of
some property P is typical for members of 2ω, in general this gives
us no information about which members of 2ω fail to satisfy P.

Thus, by means of measure and category, we can identify various
kinds of typical behavior, but it is an incomplete specification of
typicality.

That is, we identify P as a typical property without specifying
which points are the typical points.



Two examples

Theorem
A function f : [0, 1]→ R of bounded variation is differentiable on a
set of measure one.

Theorem (Bruckner, Leonard 1966)

A set X ⊆ [0, 1] is the set of discontinuities of the derivative of
some differentiable function f : [0, 1]→ R if and only if X is a
meager Fσ set.



A definition of generic objects?

We have yet not arrived at the desired alternative account of
generic objects.

What about the following approach?

Let us say that

I Y ∈ 2ω is generic with respect to measure if it is contained in
every X ⊆ 2ω of measure one, and

I Y ∈ 2ω is generic with respect to category if it is contained in
every comeager X ⊆ 2ω.



Not yet...

Problem: these two notions of generic object are empty.

For each X ∈ 2ω, the set

{Y ∈ 2ω : Y 6= X}

has measure one and is comeager.

Thus, we cannot require that the objects that are generic with
respect to measure or category satisfy all large properties.

We need to restrict the large properties in some way; that is, we
need to identify something along the lines of generic properties.

That is, we face another version of the generic property problem.



3. Effective Randomness and Effective Genericity



Countable collections of properties

Note that if we define generic objects in terms of a countable
collection of properties, the resulting definition will have a
non-empty extension:

I The countable intersection of a collection of sets of Lebesgue
measure one has Lebesgue measure one.

I The countable intersection of a collection of comeager sets is
comeager.

In what follows, I will identify various countable collections of
properties that yield several families of notions of effective
typicality.



Arithmetical subsets of ω

Let S ⊆ ω.

I S is a Σ0
1 set if there is some computable predicate P(x , y)

such that
S = {x ∈ ω : (∃y) P(x , y)}

I S is a Π0
1 set if Sc is a Σ0

1 set.



Arithmetical subsets of ω, continued

I S is a Σ0
n set if there is some computable predicate

P(x , y1, . . . yn) such that

S = {x ∈ ω : (∃y1)(∀y2) . . . (Qyn) P(x , y1, . . . yn)}

where Q is “∀” if n is even and Q is “∃” if n is odd.

I S is a Π0
n set if Sc is a Σ0

n set.

We can define Σ0
n and Π0

n subsets of 2<ω simply by identifying ω
and 2<ω.



Effective genericity 1: weak n-genericity

A set S ⊆ 2<ω is dense if for every σ ∈ 2<ω, there is some τ ∈ S
such that τ � σ.

Definition
Let n ≥ 1. X ∈ 2ω is weakly n-generic if for every dense Σ0

n

S ⊆ 2<ω, there is some τ ∈ S such that τ ≺ X .



Effective genericity 2: n-genericity

Definition
Let n ≥ 1. X ∈ 2ω is n-generic if for every Σ0

n S ⊆ 2<ω, there is
some τ ≺ X such that

(i) either τ ∈ S , or

(ii) for all σ � τ , σ /∈ S .



Some remarks

1. Note that we can replace the Σ0
n sets with Σ0,∅(n−1)

1 sets, where

∅(k+1) = {e : φ∅
(k)

e (e)↓}.

2. For n ≥ 1, the following holds:

weak (n + 1)-genericity ⇒ n-genericity ⇒ weak n-genericity

3. The reverse implications do not hold.



Arithmetical subsets of 2ω

Let X ⊆ 2ω.

I X is Σ0
1 class if there is some computable predicate

P(x) ⊆ 2<ω such that

X = {Y ∈ 2ω : (∃n) P(Y �n)}

I X is Π0
1 class if Sc is a Σ0

1 class.



Arithmetical subsets of 2ω

I X is a Σ0
n class if there is some computable predicate

P(y1, . . . , yn) such that

X = {Y ∈ 2ω : (∃y1)(∀y2) . . . (Qyn) P(y1, . . . , yn−1,Y �yn)}

where Q is “∀” if n is even and Q is “∃” if n is odd.

I X is a Π0
n class if X c is a Σ0

n class.



Effective randomness 1: weak n-randomness

Definition
Let n ≥ 1. Y ∈ 2ω is weakly n-random if for every Σ0

n X ⊆ 2ω

such that λ(X ) = 1, we have Y ∈ X .



Effective randomness 2: n-randomness

Definition
Let n ≥ 1. Y ∈ 2ω is n-random if for every sequence of uniformly

Σ0,∅(n−1)

1 classes (Ui )i∈ω such that

λ(Ui ) ≤ 2−i ,

we have Y /∈
⋂

i∈ω Ui .



Some remarks

1. Caution!!! For arithmetical subsets of 2ω, Σ0
n classes are not

the same as Σ0,∅(n−1)

1 classes.

(For instance, a Σ0
2 class is the countable union of closed

subsets of 2ω, while a Σ0,∅′

1 class is an open subset of 2ω.)

2. For n ≥ 1, the following holds:

weak (n + 1)-randomness ⇒ n-randomness
⇒ weak n-randomness

3. The reverse implications do not hold.



4. Effectively Typical Objects as Generic Objects



A possible worry

One might worry that the different choices of “generic properties”
here are made in an ad hoc manner.

That is, one might question whether we have provided a principled
response to the generic property problem.

Do the various effective notions of typicality as provide a
particularly useful or informative account of arbitrary objects?



Effective analogues of set-theoretic notions

One line of response is to appeal to direct connections between
effective notions of typicality and set-theoretic notions of
genericity:

I weak n-genericity is an effective version of Cohen genericity;

I weak n-randomness is equivalent to Solovay n-genericity,
which is an effective version of Solovay genericity.

To develop this response, one needs to argue (i) that set-theoretic
notions of generic objects provide a reasonable account of arbitrary
objects and (ii) that the “arbitrariness” of these set-theoretic
generics is not lost in the passage to their effective analogues.



The typical Turing degree

A second line of response is to appeal to the role that these
effective notions of typicality play in the study of the typical Turing
degree. For example:

I Weakly 1-generic degrees are precisely the hyperimmune
degrees (degrees that compute a function not dominated by
any computable function).

I 2-randomness and 2-genericity feature prominently in these
investigations.

While this is a more promising line to take, it is still vulnerable to
the criticism that this is a rather narrow range of applicability.



Capturing typical behavior in classical mathematics

The strongest reason to take effective notions of typicality as
providing a useful and informative account of arbitrary objects can
be illustrated by the following examples:

Theorem (Bruckner, Leonard 1966)

A set X ⊆ [0, 1] is the set of discontinuities of the derivative of
some function f : [0, 1]→ R if and only if X is a meager Fσ set.

Theorem (Kuyper, Terwijn 2013)

A real x ∈ [0, 1] is 1-generic if and only if for every computable
differentiable f : [0, 1]→ R, f ′ is continuous at x.



Capturing typical behavior in classical mathematics
(continued)

Theorem
A function f : [0, 1]→ R of bounded variation is differentiable on a
set of measure one.

Theorem (Brattka, Miller, Nies 2014)

A real x ∈ [0, 1] is 1-random if and only if every computable
function f : [0, 1]→ R of bounded variation is differentiable at x.

Theorem (Brattka, Miller, Nies 2014)

A real x ∈ [0, 1] is weakly 2-random if and only if every
computable function f : [0, 1]→ R that is differentiable on a set of
measure one is differentiable at x.



Incomplete vs. complete specifications of typicality

The classical versions of these theorems tells us that certain
properties are almost universal, but there is a small set of atypical
exceptions.

As stated earlier, this yields an incomplete specification of the
typical points.

By contrast, in the effective setting, we get a more complete
specification of typical behavior.

That is, we have additional information concerning precisely where
the typical behavior is guaranteed to occur.



Summing up

The account of arbitrary objects given by effective notions of
typicality

I is rooted in the study of typical behavior given in terms of
measure and category;

I allows us to analyze typical behavior that permits exceptions;
and

I provides additional information about the exceptions to this
typical behavior (information that is not available on the
classical approach).



Thank you for your attention.


