Effectively closed classes, negligibility, and depth

Christopher P. Porter Université Paris 7 LIAFA

Joint work with Laurent Bienvenu and Antoine Taveneaux

Logic and Analysis Seminar Universiteit Gent 6 November 2013

Introduction

Let $\mathcal{P}\subseteq 2^\omega$ be an effectively closed subset of 2^ω (also known as a Π^0_1 class).

Suppose we would like to produce a member of \mathcal{P} by means of some combination of deterministic and probabilistic procedures.

More specifically, we want such a combination of procedures to produce a member of \mathcal{P} with positive probability.

Our main question is:

What obstacles could prevent us from succeeding?

Introduction (continued)

Today I will discuss two such obstacles:

- 1. negligibility
- 2. depth

Negligible classes are precisely the classes whose members cannot be computed with positive probability by any combination of deterministic and probabilistic procedures.

Deep classes are even stronger: we cannot even produce an initial segment of some member of a deep class with sufficiently high probability (which I will make precise shortly).

Outline of the talk

- 1. Background
- 2. Defining negligibility and depth
- 3. Basic results on negligible and deep classes
- 4. Examples

1. Background

Martin-Löf randomness

Definition

▶ A *Martin-Löf test* is a sequence $(U_i)_{i \in \omega}$ of uniformly Σ_1^0 (i.e. effectively open) subsets of 2^{ω} such that for each i,

$$\lambda(\mathcal{U}_i) \leq 2^{-i}$$
.

- ▶ A sequence $X \in 2^{\omega}$ passes the Martin-Löf test $(\mathcal{U}_i)_{i \in \omega}$ if $X \notin \bigcap_i \mathcal{U}_i$.
- ▶ $X \in 2^{\omega}$ is *Martin-Löf random*, denoted $X \in MLR$, if X passes every Martin-Löf test.

Computable measures

Definition

A measure μ on 2^{ω} is *computable* if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is computable as a real-valued function.

In other words, μ is computable if there is a computable function $\hat{\mu}: 2^{<\omega} \times \omega \to \mathbb{Q}_2$ such that

$$|\mu(\llbracket \sigma \rrbracket) - \hat{\mu}(\sigma, i)| \le 2^{-i}$$

for every $\sigma \in 2^{<\omega}$ and $i \in \omega$.

From now on we will write $\mu(\sigma)$ instead of $\mu(\llbracket \sigma \rrbracket)$.

Examples of computable measures

- ▶ The Lebesgue measure λ
- For computable $p \in [0, 1]$, the Bernoulli p-measure μ_p , defined by

$$\mu_{\rho}(\sigma) = \rho^{\#_0(\sigma)} (1 - \rho)^{\#_1(\sigma)},$$

where $\#_i(\sigma)$ denotes the number of *i*'s in σ for i=0,1

▶ For a computable sequence $X \in 2^{\omega}$, the Dirac measure δ_X concentrated on X, defined by

$$\delta_X(\sigma) = \begin{cases} 1 & \text{if } \sigma \prec X \\ 0 & \text{if } \sigma \not\prec X \end{cases}$$

Randomness with respect to computable measures

We will also be interested in sequences that are Martin-Löf random with respect to a computable measure.

Definition

Let μ be a computable measure.

▶ A μ -Martin-Löf test is a sequence $(\mathcal{U}_i)_{i \in \omega}$ of uniformly Σ_1^0 subsets of 2^{ω} such that for each i,

$$\mu(\mathcal{U}_i) \leq 2^{-i}$$
.

▶ $X \in 2^{\omega}$ is μ -Martin-Löf random, denoted $X \in MLR_{\mu}$, if X passes every μ -Martin-Löf test.

Atomic computable measures

A measure μ is *atomic* if there is some $X \in 2^{\omega}$ such that $\mu(\{X\}) > 0$.

Note that if X is an atom of a computable measure μ , then $X \in \mathsf{MLR}_{\mu}.$

Every computable sequence is the atom of some computable measure, namely δ_X .

In fact, the converse holds: if X is the atom of a computable measure, then X is a computable sequence.

Computationally powerful random sequences

It is worth noting that some Martin-Löf random sequences can compute a member of every Π_1^0 class.

Recall that $X \in 2^{\omega}$ has PA degree if X computes a consistent completion of Peano arithmetic.

An important result of Simpson's is that every sequence of PA degree computes a member of every Π_1^0 class.

Combining this with the fact that some Martin-Löf random sequences have PA degree yields the result.

Stephan's dichotomy theorem

However, Stephan proved that this computational power is the exception and not the rule for Martin-Löf random sequences:

Theorem (Stephan)

If a Martin-Löf random has PA degree, it is already Turing complete (i.e., $A \ge_T \emptyset'$).

Since the collection of sequences that compute \emptyset' has Lebesgue measure zero, it follows that almost every Martin-Löf random sequence cannot compute a completion of PA.

Difference randomness

This latter fact is related to a notion of randomness known as difference randomness.

Definition

▶ A difference test is a computable sequence $((\mathcal{U}_i, \mathcal{V}_i))_{i \in \omega}$ of pairs of Σ_1^0 classes such that for each i,

$$\lambda(\mathcal{U}_i \setminus \mathcal{V}_i) \leq 2^{-i}$$
.

- ▶ A sequence $X \in 2^{\omega}$ passes the difference test $((\mathcal{U}_i, \mathcal{V}_i))_{i \in \omega}$ if $X \notin \bigcap_i (\mathcal{U}_i \setminus \mathcal{V}_i)$.
- ▶ $X \in 2^{\omega}$ is difference random if X passes every difference test.

Difference randomness and Stephan's theorem

The following theorem is quite surprising:

Theorem (Franklin, Ng)

Let A be Martin-Löf random. Then A is difference random if and only if $A \not\geq_T \emptyset'$.

Combining this with Stephan's theorem yields:

Corollary

Let A be Martin-Löf random. Then A is difference random if and only if A does not have PA degree.

2. Defining negligibility and depth

A brief road-map

Negligibility and depth are both defined in terms of a certain measure that is in a certain sense universal.

To define this measure, we need to take a detour to discuss the following:

- ▶ left-c.e. semi-measures,
- universal semi-measures, and
- deriving a measure from a semi-measure.

Throughout this discussion, we will emphasize the connection to Turing functionals.

Left-c.e. semi-measures

A *semi-measure* $\rho: 2^{<\omega} \to [0,1]$ satisfies

- $ho(\varnothing)=1$ and
- $\rho(\sigma) \ge \rho(\sigma 0) + \rho(\sigma 1)$ for every $\sigma \in 2^{<\omega}$.

We will be particularly interested in *left-c.e.* semi-measures.

A semi-measure ρ is left-c.e. if each value $\rho(\sigma)$ is the limit of a non-decreasing computable sequence of rationals, uniformly in σ .

Induced semi-measures

Recall: A *Turing functional* $\Phi: 2^{\omega} \to 2^{\omega}$ is given by a c.e. set of pairs of strings (σ, τ) such that if $(\sigma, \tau), (\sigma', \tau') \in \Phi$ and $\sigma \preceq \sigma'$, then $\tau \preceq \tau'$ or $\tau' \preceq \tau$.

For $\sigma \in 2^{<\omega}$, we define $\Phi^{-1}(\sigma) := \{X \in 2^{\omega} : \exists n \ (X \upharpoonright n, \sigma) \in \Phi\}.$

Proposition

(i) If Φ is a Turing functional, then λ_{Φ} , defined by

$$\lambda_{\Phi}(\sigma) = \lambda(\Phi^{-1}(\sigma))$$

for every $\sigma \in 2^{<\omega}$, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ , there is a Turing functional Φ such that $\rho = \lambda_{\Phi}$.

Universal semi-measures, 1

Levin proved the existence of a *universal* left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e. semi-measure ρ , there is some $c \in \omega$ such that

$$\rho(\sigma) \le c \cdot M(\sigma)$$

for every $\sigma \in 2^{<\omega}$.

Universal semi-measures, 2

A universal semi-measures can be induced by a universal Turing functional.

For example, the functional Φ defined by

$$\Phi(1^e 0X) = \Phi_e(X)$$

is universal (where $(\Phi_e)_{e \in \omega}$ is an effective listing of all Turing functionals).

The measure derived from a semi-measure

If ρ is a semi-measure, we can define

$$\overline{\rho}(\sigma) := \inf_{n} \sum_{\tau \succeq \sigma \ \& \ |\tau| = n} \rho(\tau).$$

One can verify that $\overline{\rho}$ is the largest measure such that $\overline{\rho} \leq \rho$ (but it is not a probability measure in general).

Proposition

If ρ is a left-c.e. semi-measure induced by a Turing functional Φ , then

$$\overline{\rho}(\sigma) = \lambda(\{X \in 2^{\omega} : X \in \Phi^{-1}(\sigma) \& \Phi(X) \text{ is total}\}).$$

Negligible classes

Let *M* be the universal left-c.e. semi-measure.

Then \overline{M} can be seen as a universal measure (universal for all computable measures, as well as the measures derived from left-c.e. semi-measures).

Definition

 $\mathcal{S} \subseteq 2^{\omega}$ is *negligible* if $\overline{M}(\mathcal{S}) = 0$.

The intuition behind negligibility

Let \mathcal{P} be a negligible Π_1^0 class.

 $\overline{M}(\mathcal{P})=0$ means that the probability of producing some member of \mathcal{P} by means of any Turing functional equipped with any sufficiently random oracle is 0.

To see this, note that

$$\overline{M}(\mathcal{P}) = 0$$
 if and only if $\lambda \Big(\bigcup_{i \in \omega} \Phi_i^{-1}(\mathcal{P}) \Big) = 0$.

In particular, for each Φ_i , $\lambda(\{X \in MLR : \Phi_i(X) \in \mathcal{P}\}) = 0$.

Deep classes: the idea

Depth is a property that is stronger than negligibility for Π_1^0 classes.

Instead of considering how difficult it is to produce a path through a Π^0_1 class \mathcal{P} , we can consider how difficult it is to produce an *initial segment* of some path through \mathcal{P} , level by level.

Deep classes are the "most difficult" of Π_1^0 classes in this respect.

A few more definitions

Let $\mathcal{P} \subseteq 2^{\omega}$ be a Π_1^0 class.

Let $T^{ext} \subseteq 2^{<\omega}$ be the set of extendible nodes of \mathcal{P} ,

$$T^{ext} = \{ \sigma \in 2^{<\omega} : \llbracket \sigma \rrbracket \cap \mathcal{P} \neq \emptyset \}.$$

Thus T^{ext} is the canonical co-c.e. tree such that $\mathcal{P} = [T^{ext}]$ (the set of infinite paths through T^{ext}).

For each $n \in \omega$, T_n^{ext} consists of all strings in T^{ext} of length n.

(I will write T instead of T^{ext} hereafter.)

Deep classes: the definition

Let $\mathcal P$ be a Π^0_1 class and let $\mathcal T$ be the canonical co-c.e. tree corresponding to $\mathcal P$.

 \mathcal{P} is a *deep class* if there is some computable, non-decreasing, unbounded function $h:\omega\to\omega$ such that

$$M(T_n) \leq 2^{-h(n)},$$

where
$$M(T_n) = \sum_{\sigma \in T_n} M(\sigma)$$
.

That is, the probability of producing some initial segment of a path through \mathcal{P} is effectively bounded above.

3. Basic results on negligible and deep classes

Members of negligible classes

A few observations:

- ▶ If a Π_1^0 class contains a computable member, clearly it cannot be negligible.
- Moreover, if a Π₁⁰ class contains a Martin-Löf random member, it cannot be negligible, since any Π₁⁰ class with a random member must have positive Lebesgue measure.

These two facts are subsumed by the following result:

Proposition

Let \mathcal{P} be a negligible Π_1^0 class. Then for every computable measure μ , \mathcal{P} contains no $X \in \mathsf{MLR}_{\mu}$.

Does the converse hold?

Suppose that \mathcal{P} is a Π^0_1 class such that $\mathcal{P} \cap \mathsf{MLR}_\mu = \emptyset$ for every computable measure μ .

Does it follow that $\mathcal P$ is negligible?

Does the converse hold?

Suppose that \mathcal{P} is a Π^0_1 class such that $\mathcal{P} \cap \mathsf{MLR}_\mu = \emptyset$ for every computable measure μ .

Does it follow that \mathcal{P} is negligible? No.

Does the converse hold?

Suppose that \mathcal{P} is a Π_1^0 class such that $\mathcal{P} \cap \mathsf{MLR}_{\mu} = \emptyset$ for every computable measure μ .

Does it follow that \mathcal{P} is negligible? No.

Theorem (Bienvenu, Porter, Taveneaux)

There is a non-negligible Π^0_1 class $\mathcal P$ such that $\mathcal P \cap \mathsf{MLR}_\mu = \emptyset$ for every computable measure μ .

The main ingredients of the proof

- ▶ A Π^0_1 class \mathcal{P} is thin if for every Π^0_1 subclass $\mathcal{Q} \subseteq \mathcal{P}$, there is some $\sigma \in 2^{<\omega}$ such that $\mathcal{Q} = \mathcal{P} \cap \llbracket \sigma \rrbracket$.
- ▶ If a thin class \mathcal{P} has a computable member X, then X is isolated in \mathcal{P} (since $\{X\}$ is a Π_1^0 subclass of \mathcal{P}).
- ▶ Downey, Greenberg, and Miller have constructed a non-negligible, perfect thin Π_1^0 class \mathcal{P} .
- By the second point above, a perfect thin class cannot have any computable paths, and hence P does not contain any atoms of any computable atomic measure.
- Simpson showed that every thin class has Lebesgue measure 0; using the previous fact, we show Simpson's result holds for every computable measure.

Depth vs. negligibility

It's clear that every deep class is negligible. Is every negligible class deep?

Depth vs. negligibility

It's clear that every deep class is negligible. Is every negligible class deep? Again, no.

Depth vs. negligibility

It's clear that every deep class is negligible. Is every negligible class deep? Again, no.

Theorem (Bienvenu, Porter, Taveneaux)

There is a negligible class P that is not deep.

We use a finite injury argument to keep the measure of $\mathcal P$ sufficiently high at each finite level while ensuring that this measure eventually converges to 0.

Why use the co-c.e. tree in the definition of depth?

For every Π^0_1 class $\mathcal P$ there is a computable tree $T\subseteq 2^{<\omega}$ such that $\mathcal P=[T].$

Why can't we use this computable tree \mathcal{T} in the definition of depth?

In general, T will contain non-extendible nodes, so even if we can compute some element in T_n , we still may fail to compute an initial segment of a member of \mathcal{P} .

Can we give a better reason to restrict our attention to the canonical co-c.e. tree?

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h such that $M(T_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h such that $M(T_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Proof.

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h such that $M(T_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Proof.

Suppose $M(T_n) \leq 2^{-h(n)}$ for some computable order h.

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h such that $M(T_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Proof.

Suppose $M(T_n) \leq 2^{-h(n)}$ for some computable order h.

Case 1: T has only finitely many non-extendible nodes.

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h such that $M(T_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Proof.

Suppose $M(T_n) \leq 2^{-h(n)}$ for some computable order h.

Case 1: T has only finitely many non-extendible nodes.

Then the leftmost path X of T is computable (since T is computable).

Case 2: T has infinitely many non-extendible nodes.

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

f is strictly increasing, and

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n)=2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

$$M(T_{f(n)}) \geq 2^{-c} \rho(T_{f(n)})$$

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

$$M(T_{f(n)}) \ge 2^{-c} \rho(T_{f(n)}) \ge 2^{-K(n)-c}$$
.

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

$$M(T_{f(n)}) \ge 2^{-c} \rho(T_{f(n)}) \ge 2^{-K(n)-c}$$
.

But then by our assumption, $2^{-h(f(n))} \ge M(T_{f(n)})$

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

$$M(T_{f(n)}) \ge 2^{-c} \rho(T_{f(n)}) \ge 2^{-K(n)-c}$$
.

But then by our assumption, $2^{-h(f(n))} \ge M(T_{f(n)}) \ge 2^{-K(n)-c}$,

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

$$M(T_{f(n)}) \ge 2^{-c} \rho(T_{f(n)}) \ge 2^{-K(n)-c}$$
.

But then by our assumption, $2^{-h(f(n))} \ge M(T_{f(n)}) \ge 2^{-K(n)-c}$, and hence $h(f(n)) \le K(n) + c$.

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes $(\sigma_i)_{i\in\omega}$ and a computable function $f:\omega\to\omega$ such that

- f is strictly increasing, and
- ▶ $|\sigma_i| = f(i)$ for every i.

We define a semi-measure ρ such that $\rho(\sigma_n) = 2^{-K(n)}$ for every n (consistently extending ρ to initial segments of each σ_n), where K(n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

$$M(T_{f(n)}) \ge 2^{-c} \rho(T_{f(n)}) \ge 2^{-K(n)-c}$$
.

But then by our assumption, $2^{-h(f(n))} \ge M(T_{f(n)}) \ge 2^{-K(n)-c}$, and hence $h(f(n)) \le K(n) + c$.

This contradicts the fact that there is no computable lower bound for K.



Randoms computing members of deep classes

Which Martin-Löf random sequences can compute some member of a deep class?

We've already seen that if a Martin-Löf random sequence X has PA degree, it can compute a member of every deep class.

Thus, by Stephan's dichotomy theorem, if $X \in MLR$ and $X \ge_T \emptyset'$, X computes some member of a deep class.

But this is the best we can do.

Theorem (Bienvenu, Porter, Taveneaux)

No difference random sequence can compute a member of a deep class.

4. Examples

Examples of deep classes

There are a number of deep classes that naturally arise in computability theory.

We don't, however, have any "natural" examples of negligible classes that aren't deep.

I will briefly discuss three examples of deep classes:

- 1. consistent completions of Peano arithmetic;
- 2. shift-complex sequences; and
- 3. *h*-diagonally non-computable functions.

Consistent completions of Peano arithmetic

The following is implicit in work of Levin and Stephan.

Theorem

The Π_1^0 class of consistent completions of PA is a deep class.

The idea is to define a partial computable $\{0,1\}$ -valued function f (using the recursion theorem) in such a way that we diagonalize against large classes of oracles that could potentially compute a total extension of f.

Shift-complex sequences: the idea

Although a Martin-Löf random sequence X has high initial segment complexity, satisfying

$$K(X \upharpoonright n) \geq n - O(1),$$

X will still contain arbitrarily long runs of 0s (since all Martin-Löf random sequences are normal).

That is, certain subwords of X can have fairly low initial segment complexity.

By contrast, a shift-complex sequence is a sequence with the property that every subword has high initial segment complexity.

Shift-complex sequences: the formal definition

For $\delta \in (0,1)$ and $c \in \omega$, we say that $X \in 2^{\omega}$ is (δ,c) -shift complex if

$$K(\tau) \ge \delta |\tau| - c$$

for every subword τ of X.

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter, Taveneaux)

For every $\delta \in (0,1)$ and $c \in \omega$, the (δ,c) -shift complex sequences form a deep class.

Diagonally non-computable sequences and randomness

Recall that a sequence X is diagonally non-computable if there is some total function $f \leq_T X$ such that $f(e) \neq \phi_e(e)$ for every e.

Every Martin-Löf random sequence X is diagonally non-computable:

Let $f(e) = X \upharpoonright e$ (coded as a natural number).

Note that $f(e) < 2^{e+1}$.

DNC_h functions

Let h be a computable, non-decreasing, unbounded function.

f is a DNC_h function if

- ▶ *f* is total,
- $f(e) \neq \phi_e(e)$ for every e, and
- f(e) < h(e) for every e.

Theorem (Bienvenu, Porter, Taveneaux)

DNR_h is a deep class if and only if $\sum_{n=0}^{\infty} \frac{1}{h(n)} = \infty$.

Moreover, if $\sum_{n=0}^{\infty} \frac{1}{h(n)} < \infty$, then every Martin-Löf random computes a DNC_h function.