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Introduction

Let P ⊆ 2ω be an effectively closed subset of 2ω (i.e. a Π0
1 class).

Suppose we would like to produce a member of P by means of
some combination of deterministic and probabilistic procedures.

More specifically, we want a combination of these procedures to
produce a member of P with positive probability.

Our main question is:

I What obstacles could prevent us from succeeding?



Introduction (continued)

Today I will discuss two such obstacles:

1. negligibility

2. depth

Negligible classes are precisely the classes whose members cannot
be computed with positive probability by any combination of
deterministic and probabilistic procedures.

Deep classes are even stronger: we cannot even produce an initial
segment of some member of a deep class with sufficiently high
probability (which I will make precise shortly).
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1. Background



Martin-Löf randomness

Definition

I A Martin-Löf test is a sequence (Ui )i∈ω of uniformly Σ0
1 (i.e.

effectively open) subsets of 2ω such that for each i ,

λ(Ui ) ≤ 2−i .

I A sequence X ∈ 2ω passes the Martin-Löf test (Ui )i∈ω if
X /∈

⋂
i Ui .

I X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



Computable measures

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on we will write µ(σ) instead of µ(JσK).



Randomness with respect to computable measures

We will also be interested in sequences that are Martin-Löf random
with respect to a computable measure.

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a sequence (Ui )i∈ω of uniformly Σ0
1

subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.



Atomic computable measures

A measure µ is atomic if there is some X ∈ 2ω such that
µ({X}) > 0.

I Note that if X is an atom of a computable measure µ, then
X ∈ MLRµ.

I Every computable sequence is the atom of some computable
measure, namely, the Dirac measure δX concentrated on X ,
defined by

δX (σ) =

{
1 if σ ≺ X
0 if σ 6≺ X

.

I In fact, the converse holds: if X is the atom of a computable
measure, then X is a computable sequence.



Computationally powerful random sequences

It is worth noting that some Martin-Löf random sequences can
compute a member of every Π0

1 class.

Recall that X ∈ 2ω has PA degree if X computes a consistent
completion of Peano arithmetic.

It is well known that every sequence of PA degree computes a
member of every Π0

1 class.

Combining this with the fact that some Martin-Löf random
sequences have PA degree yields the result.



Stephan’s dichotomy theorem

However, Stephan proved that this computational power is the
exception and not the rule for Martin-Löf random sequences:

Theorem (Stephan)

If a Martin-Löf random sequence A has PA degree, it is already
Turing complete (i.e., A ≥T ∅′).

Since the collection of sequences that compute ∅′ has Lebesgue
measure zero, it follows that almost every Martin-Löf random
sequence cannot compute a completion of PA.



Difference randomness

This latter fact is related to a notion of randomness known as
difference randomness.

Definition

I A difference test is a computable sequence ((Ui ,Vi ))i∈ω of
pairs of Σ0

1 classes such that for each i ,

λ(Ui \ Vi ) ≤ 2−i .

I A sequence X ∈ 2ω passes the difference test ((Ui ,Vi ))i∈ω if
X /∈

⋂
i (Ui \ Vi ).

I X ∈ 2ω is difference random if X passes every difference test.



Difference randomness and Stephan’s theorem

The following theorem is quite surprising:

Theorem (Franklin, Ng)

Let A be Martin-Löf random. Then A is difference random if and
only if A 6≥T ∅′.

Combining this with Stephan’s theorem yields:

Corollary

Let A be Martin-Löf random. Then A is difference random if and
only if A does not have PA degree.



2. Defining negligibility and depth



A brief road-map

Negligibility is defined in terms of a measure that is in a certain
sense universal.

To define this measure, we need to take a detour to discuss the
following:

I left-c.e. semi-measures,

I universal semi-measures, and

I deriving a measure from a semi-measure.

Throughout this discussion, we will emphasize the connection to
Turing functionals.



Left-c.e. semi-measures

A semi-measure ρ : 2<ω → [0, 1] satisfies

I ρ(∅) = 1 and

I ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

We will be particularly interested in left-c.e. semi-measures.

A semi-measure ρ is left-c.e. if each value ρ(σ) is the limit of a
non-decreasing computable sequence of rationals, uniformly in σ.



Induced semi-measures

Recall: A Turing functional Φ : 2ω → 2ω is given by a c.e. set of
pairs of strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ Φ and σ � σ′,
then τ � τ ′ or τ ′ � τ .

For σ ∈ 2<ω, we define Φ−1(σ) := {X ∈ 2ω : ∃n (X �n, σ) ∈ Φ}.

Proposition

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ, there is a Turing functional
Φ such that ρ = λΦ.



Universal semi-measures, 1

Levin proved the existence of a universal left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e.
semi-measure ρ, there is some c ∈ ω such that

ρ(σ) ≤ c ·M(σ)

for every σ ∈ 2<ω.



Universal semi-measures, 2

A universal semi-measures can be induced by a universal Turing
functional.

For example, the functional Φ defined by

Φ(1e0X ) = Φe(X )

is universal (where (Φe)e∈ω is an effective listing of all Turing
functionals).



The measure derived from a semi-measure

If ρ is a semi-measure, we can define

ρ(σ) := infn
∑

τ�σ & |τ |=n

ρ(τ).

One can verify that ρ is the largest measure such that ρ ≤ ρ (but
it is not a probability measure in general).

Proposition

If ρ is a left-c.e. semi-measure induced by a Turing functional Φ,
then

ρ(σ) = λ({X ∈ 2ω : X ∈ Φ−1(σ) & Φ(X ) is total}).



Negligible classes

Let M be the universal left-c.e. semi-measure.

Then M can be seen as a universal measure (universal for all
computable measures, as well as the measures derived from
left-c.e. semi-measures).

Definition
S ⊆ 2ω is negligible if M(S) = 0.



The intuition behind negligibility

Let P be a negligible Π0
1 class.

M(P) = 0 means that the probability of producing some member
of P by means of any Turing functional equipped with any
sufficiently random oracle is 0.

To see this, note that

M(P) = 0 if and only if λ
(⋃
i∈ω

Φ−1
i (P)

)
= 0.

In particular, for each Φi , λ({X ∈ MLR : Φi (X ) ∈ P}) = 0.



Deep classes: the idea

Depth is a property that is stronger than negligibility for Π0
1 classes.

Instead of considering how difficult it is to produce a path through
a Π0

1 class P, we can consider how difficult it is to produce an
initial segment of some path through P, level by level.

Deep classes are the “most difficult” of Π0
1 classes in this respect.



A few more definitions

Let P ⊆ 2ω be a Π0
1 class.

Let T ext ⊆ 2<ω be the set of extendible nodes of P,

T ext = {σ ∈ 2<ω : JσK ∩ P 6= ∅}.

Thus T ext is the canonical co-c.e. tree such that P = [T ext ] (the
set of infinite paths through T ext).

For each n ∈ ω, T ext
n consists of all strings in T ext of length n.

(I will write T instead of T ext hereafter.)



Deep classes: the definition

Let P be a Π0
1 class and let T be the canonical co-c.e. tree such

that P = [T ].

P is a deep class if there is some computable, non-decreasing,
unbounded function h : ω → ω such that

M(Tn) ≤ 2−h(n),

where M(Tn) =
∑

σ∈Tn
M(σ).

That is, the probability of producing some initial segment of a path
through P is effectively bounded above.



3. Basic results on negligible and deep classes



Members of negligible classes

A few observations:

I If a Π0
1 class contains a computable member, clearly it cannot

be negligible.

I Moreover, if a Π0
1 class contains a Martin-Löf random

member, it cannot be negligible, since any Π0
1 class with a

random member must have positive Lebesgue measure.

These two facts are subsumed by the following result:

Proposition

Let P be a negligible Π0
1 class. Then for every computable measure

µ, P contains no X ∈ MLRµ.



Does the converse hold?

Suppose that P is a Π0
1 class such that P ∩MLRµ = ∅ for every

computable measure µ.

Does it follow that P is negligible?

No.

Theorem (Bienvenu, Porter, Taveneaux)

There is a non-negligible Π0
1 class P such that P ∩MLRµ = ∅ for

every computable measure µ.
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Suppose that P is a Π0
1 class such that P ∩MLRµ = ∅ for every

computable measure µ.

Does it follow that P is negligible? No.
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The main ingredients of the proof

I A Π0
1 class P is thin if for every Π0

1 subclass Q ⊆ P, there is
some σ ∈ 2<ω such that Q = P ∩ JσK.

I If a thin class P has a computable member X , then X is
isolated in P (since {X} is a Π0

1 subclass of P).

I Downey, Greenberg, and Miller have constructed a
non-negligible, perfect thin Π0

1 class P.

I By the second point above, a perfect thin class cannot have
any computable paths, and hence P does not contain any
atoms of any computable atomic measure.

I Simpson showed that every thin class has Lebesgue measure
0; using the previous fact, we show Simpson’s result holds for
every computable measure.



Depth vs. negligibility

It’s clear that every deep class is negligible. Is every negligible class
deep?

Again, no.

Theorem (Bienvenu, Porter, Taveneaux)

There is a negligible class P that is not deep.

We use a finite injury argument to keep the measure of P
sufficiently high at each finite level while ensuring that this
measure eventually converges to 0.
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Depth vs. negligibility

It’s clear that every deep class is negligible. Is every negligible class
deep? Again, no.

Theorem (Bienvenu, Porter, Taveneaux)

There is a negligible class P that is not deep.

We use a finite injury argument to keep the measure of P
sufficiently high at each finite level while ensuring that this
measure eventually converges to 0.



Why use the co-c.e. tree in the definition of depth?

For every Π0
1 class P there is a computable tree T ⊆ 2<ω such

that P = [T ].

Why can’t we use this computable tree T in the definition of
depth?

In general, T will contain non-extendible nodes, so even if we can
compute some element in Tn, we still may fail to compute an
initial segment of a member of P.

Can we give a better reason to restrict our attention to the
canonical co-c.e. tree?



Vindicating the definition of depth

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h
such that M(Tn) ≤ 2−h(n) for every n ∈ ω.

Proof.
Suppose M(Tn) ≤ 2−h(n) for some computable order h.

Case 1: T has only finitely many non-extendible nodes.

Then the leftmost path X of T is computable (since T is
computable).
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Vindicating the definition of depth, 2

Case 2: T has infinitely many non-extendible nodes.

We define a computable sequence of terminal nodes (σi )i∈ω and a
computable function f : ω → ω such that

I f is strictly increasing, and

I |σi | = f (i) for every i .

We define a semi-measure ρ such that ρ(σn) = 2−K(n) for every n
(consistently extending ρ to initial segments of each σn), where
K (n) is the prefix-free Kolmogorov complexity of n.

Then there is some c such that

M(Tf (n)) ≥ 2−cρ(Tf (n)) ≥ 2−K(n)−c .

But then by our assumption, 2−h(f (n)) ≥ M(Tf (n)) ≥ 2−K(n)−c ,
and hence h(f (n)) ≤ K (n) + c .

This contradicts the fact that there is no computable lower bound
for K .
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Randoms computing members of deep classes

Which Martin-Löf random sequences can compute some member
of a deep class?

We’ve already seen that if a Martin-Löf random sequence X has
PA degree, it can compute a member of every deep class.

Thus, by Stephan’s dichotomy theorem, if X ∈ MLR and X ≥T ∅′,
X computes some member of a deep class.

But this is the best we can do.

Theorem (Bienvenu, Porter, Taveneaux)

No difference random sequence can compute a member of a deep
class.



4. Examples



Examples of deep classes

There are a number of deep classes that naturally arise in
computability theory.

We don’t, however, have any “natural” examples of negligible
classes that aren’t deep.

I will briefly discuss three examples of deep classes:

1. consistent completions of Peano arithmetic;

2. shift-complex sequences; and

3. h-diagonally non-computable functions.



Consistent completions of Peano arithmetic

The following is implicit in work of Levin and Stephan.

Theorem
The Π0

1 class of consistent completions of PA is a deep class.

The idea is to define a partial computable {0, 1}-valued function f
(using the recursion theorem) in such a way that we diagonalize
against large classes of oracles that could potentially compute a
total extension of f .



Shift-complex sequences: the idea

Although a Martin-Löf random sequence X has high initial
segment complexity, satisfying

K (X �n) ≥ n − O(1),

X will still contain arbitrarily long runs of 0s (since all Martin-Löf
random sequences are normal).

That is, certain subwords of X can have fairly low initial segment
complexity.

By contrast, a shift-complex sequence is a sequence with the
property that every subword has high initial segment complexity.



Shift-complex sequences: the formal definition

For δ ∈ (0, 1) and c ∈ ω, we say that X ∈ 2ω is (δ, c)-shift
complex if

K (τ) ≥ δ|τ | − c

for every subword τ of X .

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter, Taveneaux)

For every δ ∈ (0, 1) and c ∈ ω, the (δ, c)-shift complex sequences
form a deep class.



Diagonally non-computable sequences and randomness

Recall that a sequence X is diagonally non-computable if there is
some total function f ≤T X such that f (e) 6= φe(e) for every e.

Every Martin-Löf random sequence X is diagonally
non-computable:

Let f (e) = X �e (coded as a natural number).

Note that f (e) < 2e+1.



DNCh functions

Let h be a computable, non-decreasing, unbounded function.

f is a DNCh function if

I f is total,

I f (e) 6= φe(e) for every e, and

I f (e) < h(e) for every e.

Theorem (Bienvenu, Porter, Taveneaux)

DNCh is a deep class if and only if
∑∞

n=0
1

h(n) =∞.

Moreover, if
∑∞

n=0
1

h(n) <∞, then every Martin-Löf random
computes a DNCh function.



Thank you for your attention!


