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A motivating question

Suppose we have an algorithmic procedure P that, upon receiving
an infinite binary sequence as input, outputs either an infinite
binary sequence or a finite binary string.

Q: What is the ‘typical’ infinite output of P?



Towards providing a partial answer

In the case that P produces an infinite output for each infinite
input, or does so with probability one, we can already provide a
partial answer to O, at least if we sharpen it in a particular way:
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Towards providing a partial answer

In the case that P produces an infinite output for each infinite
input, or does so with probability one, we can already provide a
partial answer to O, at least if we sharpen it in a particular way:

P > a Turing functional
G:2v 5 Wy

the ‘typical’ ~ random w.r.t. the
infinite output induced measure



Martin-Lof randomness

Definition
Let u be a computable measure.

> A p-Martin-L6f test is a uniform sequence (U)ie,, of X9 (i.e.
effectively open) subsets of 2* such that for each i,
pUhs) <277,
> A sequence X € 2% passes the j-Martin-Lof test (U;)icy if

» X € 2% is u-Martin-Lof random, denoted X € MLR,,, if X
passes every u-Martin-Lof test.



Induced measures

Let us say that a Turing functional ® is almost total if
A(dom(®)) = 1.

Given an almost total Turing functional ®, the measure induced by
® is defined by

Ao (S) = A{X €2¥: d(X) € S}).
for all measurable S C 2%,

Moreover, A\¢ is a computable measure.
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A partial answer

Let ® be a Turing functional.
Q: What is the ‘typical’ infinite output of ®7

If ® is almost total, then the typical infinite outputs of ® are
precisely the sequences that are Martin-Lof random with respect to
the induced measure \g.

» For every Martin-Lof random input X, ®(X) is Martin-Lof
random with respect to \e. (randomness preservation)

» For every sequence Y that is Martin-Lof random with respect
to Ag, there is some Martin-Lof random X such that
®(X) = Y. (the ex nihilo principle)



But we don't just want a partial answer!

This is the question that we want to answer:

O*: If ® yields an infinite output with probability strictly less than
one, what is the ‘typical’ infinite output of ®7
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Introducing semi-measures
Let ® be a Turing functional such that A(dom(®)) < 1.

For each o € 2<%, we can define

Mo(0) = A({X €29 1 o < &(X)}).

But in general, we have

Ao (0) > Ao(00) + Ao (0l1)
for every o € 2<%,
Ao iS not a measure, but rather a semi-measure.

In addition, Ag is left-c.e., which means that the values Ay (o) for
o € 2<% are uniformly computably approximable from below.
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Returning to our question
Q*: If ® yields an infinite output with probability strictly less than
one, what is the ‘typical’ infinite output of ®7

To answer Q* along the same lines as our partial answer to Q for
almost total functionals, we need to answer the following:

O™ Which sequences are random with respect to a left-c.e.
semi-measure?
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A naive approach

Let p be a left-c.e. semi-measure.

Why not simply replace the measure i in the definition of
p-Martin-Lof randomness with a left-c.e. semi-measure p?

Let's say a p-test is a uniform sequence (U;);ew of c.e. subsets of
2<% such that for each i,

p(Up) <27,

Can we define randomness with respect to a semi-measure in terms
of p-tests?



The drawback of p-tests

Unfortunately, p-tests don’t behave so nicely:

Proposition (BHPS)

There is a left-c.e. semi-measure p such that for any uniform
sequence (U;)ic,, of c.e. subsets of 2<% satisfying

p(Up) <277

for every i € w, we have [, [Ui] = 0.
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Another approach

Recently, Shen asked the following question:

Question
If ® and W are Turing functionals that induce the same

semi-measure, i.e.,
Ao = Ay,

does it follow that $(MLR) = V(MLR)?

A positive answer to Shen's question would justify the following
definition:

Y is random with respect to a semi-measure p if for any Turing
functional ® such that p = A\¢, there is some X € MLR such that
d(X)=Y.



A negative answer to Shen's question

But we have the following.

Proposition (BHPS)
There exist Turing functionals ® and V such that

and
®(MLR) # W(MLR).
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Trimming a semi-measure back to a measure

If pis a left-c.e. semi-measure, we can define

plo) =inf, Y p(7).

T>=0 & |T|=n

One can verify that p is the largest measure such that p < p (but
it is not a probability measure in general).

As we will see shortly, p can be computationally unwieldy.



Two options for p-randomness

To define Martin-Lof randomness with respect to the measure p,
we have two options.



Two options for p-randomness

To define Martin-Lof randomness with respect to the measure p,
we have two options.

> We can allow access to p as an oracle in enumerating our
tests.



Two options for p-randomness

To define Martin-Lof randomness with respect to the measure p,
we have two options.

> We can allow access to p as an oracle in enumerating our
tests.

» We can enumerate our tests without access to p as an oracle.



Two options for p-randomness

To define Martin-Lof randomness with respect to the measure p,
we have two options.

> We can allow access to p as an oracle in enumerating our
tests.

» We can enumerate our tests without access to p as an oracle.

This latter approach is referred to as blind Martin-Lof randomness.



Encoding information in p

Theorem (BHPS)
There is a left-c.e. semi-measure p and some « € (0, 1) such that
» p=ua- A and

»a=710".
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Some consequences

Let p be the semi-measure from the theorem on the previous slide.

» Martin-Lof randomness with respect to p with access to p as
an oracle yields 3-randomness. TOO STRONG!

» Blind randomness with respect to p yields Martin-Lof
randomness.

Blind Martin-Lof randomness with respect to p seems promising.

Problem: The preservation of blind randomness is not satisfied for
some p derived from a left-c.e. semi-measure p.



Weak 2-randomness

Definition
Let 1 be a computable measure.

> A generalized pi-Martin-L6f test is a uniform sequence (U;)icy,
of £9 (i.e. effectively open) subsets of 2 such that

lim p(U;) = 0.

i—00

» X € 2% is pu-weakly 2-random, denoted X € W2R,,, if X
passes every u-Martin-Lof test.

We can also define weak 2-randomness for non-computable
measures such as p, as well as blind weak 2-randomness.



The virtues of W2R wrt a semi-measure, 1

Given a left-c.e. semi-measure p, a generalized p-test is a uniform
sequence (U;)icw of c.e. subsets of 2<% such that for each i,

lim p(U;) = 0.

1—00

Theorem (BHPS)

Let p be a left-c.e. semi-measure. Then X passes every generalized
p-test if and only X is blind weakly 2-random with respect to p.
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The virtues of W2R wrt a semi-measure, 2

Unlike blind Martin-Lof randomness with respect to p, we have
preservation of randomness for blind weak 2-randomness with
respect to p.

Theorem (BHPS)

If X € W2R and & is a Turing functional such that X € dom(®),
then ®(X) is blind weakly 2-random with respect to p.

Open question: Does blind weak 2-randomness with respect to p
satisfy the ex nihilo principle?



