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A motivating question

Suppose we have an algorithmic procedure P that, upon receiving
an infinite binary sequence as input, outputs either an infinite
binary sequence or a finite binary string.

Q: What is the ‘typical’ infinite output of P?



Towards providing a partial answer

In the case that P produces an infinite output for each infinite
input, or does so with probability one, we can already provide a
partial answer to Q, at least if we sharpen it in a particular way:

P  a Turing functional
Φ : 2ω → 2ω ∪ 2<ω

the ‘typical’  random w.r.t. the
infinite output induced measure
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Martin-Löf randomness

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a uniform sequence (Ui )i∈ω of Σ0
1 (i.e.

effectively open) subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I A sequence X ∈ 2ω passes the µ-Martin-Löf test (Ui )i∈ω if
X /∈

⋂
i Ui .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.



Induced measures

Let us say that a Turing functional Φ is almost total if
λ(dom(Φ)) = 1.

Given an almost total Turing functional Φ, the measure induced by
Φ is defined by

λΦ(S) = λ({X ∈ 2ω : Φ(X ) ∈ S}).

for all measurable S ⊆ 2ω.

Moreover, λΦ is a computable measure.



A partial answer

Let Φ be a Turing functional.

Q: What is the ‘typical’ infinite output of Φ?

If Φ is almost total, then the typical infinite outputs of Φ are
precisely the sequences that are Martin-Löf random with respect to
the induced measure λΦ.

I For every Martin-Löf random input X , Φ(X ) is Martin-Löf
random with respect to λΦ. (randomness preservation)

I For every sequence Y that is Martin-Löf random with respect
to λΦ, there is some Martin-Löf random X such that
Φ(X ) = Y . (the ex nihilo principle)
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Φ(X ) = Y . (the ex nihilo principle)



A partial answer

Let Φ be a Turing functional.

Q: What is the ‘typical’ infinite output of Φ?

If Φ is almost total, then the typical infinite outputs of Φ are
precisely the sequences that are Martin-Löf random with respect to
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But we don’t just want a partial answer!

This is the question that we want to answer:

Q∗: If Φ yields an infinite output with probability strictly less than
one, what is the ‘typical’ infinite output of Φ?



Introducing semi-measures

Let Φ be a Turing functional such that λ(dom(Φ)) < 1.

For each σ ∈ 2<ω, we can define

λΦ(σ) = λ({X ∈ 2ω : σ � Φ(X )}).

But in general, we have

λΦ(σ) ≥ λΦ(σ0) + λΦ(σ1)

for every σ ∈ 2<ω.

λΦ is not a measure, but rather a semi-measure.

In addition, λΦ is left-c.e., which means that the values λΦ(σ) for
σ ∈ 2<ω are uniformly computably approximable from below.
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Returning to our question

Q∗: If Φ yields an infinite output with probability strictly less than
one, what is the ‘typical’ infinite output of Φ?

To answer Q∗ along the same lines as our partial answer to Q for
almost total functionals, we need to answer the following:

Q∗∗: Which sequences are random with respect to a left-c.e.
semi-measure?
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A naive approach

Let ρ be a left-c.e. semi-measure.

Why not simply replace the measure µ in the definition of
µ-Martin-Löf randomness with a left-c.e. semi-measure ρ?

Let’s say a ρ-test is a uniform sequence (Ui )i∈ω of c.e. subsets of
2<ω such that for each i ,

ρ(Ui ) ≤ 2−i .

Can we define randomness with respect to a semi-measure in terms
of ρ-tests?
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The drawback of ρ-tests

Unfortunately, ρ-tests don’t behave so nicely:

Proposition (BHPS)

There is a left-c.e. semi-measure ρ such that for any uniform
sequence (Ui )i∈ω of c.e. subsets of 2<ω satisfying

ρ(Ui ) ≤ 2−i

for every i ∈ ω, we have
⋂

i∈ωJUiK = ∅.



Another approach

Recently, Shen asked the following question:

Question
If Φ and Ψ are Turing functionals that induce the same
semi-measure, i.e.,

λΦ = λΨ,

does it follow that Φ(MLR) = Ψ(MLR)?

A positive answer to Shen’s question would justify the following
definition:

Y is random with respect to a semi-measure ρ if for any Turing
functional Φ such that ρ = λΦ, there is some X ∈ MLR such that
Φ(X ) = Y .
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A negative answer to Shen’s question

But we have the following.

Proposition (BHPS)

There exist Turing functionals Φ and Ψ such that

λΦ = λΨ

and
Φ(MLR) 6= Ψ(MLR).



Trimming a semi-measure back to a measure

If ρ is a left-c.e. semi-measure, we can define

ρ(σ) := infn
∑

τ�σ & |τ |=n

ρ(τ).

One can verify that ρ is the largest measure such that ρ ≤ ρ (but
it is not a probability measure in general).

As we will see shortly, ρ can be computationally unwieldy.
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Two options for ρ-randomness

To define Martin-Löf randomness with respect to the measure ρ,
we have two options.

I We can allow access to ρ as an oracle in enumerating our
tests.

I We can enumerate our tests without access to ρ as an oracle.

This latter approach is referred to as blind Martin-Löf randomness.
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To define Martin-Löf randomness with respect to the measure ρ,
we have two options.

I We can allow access to ρ as an oracle in enumerating our
tests.

I We can enumerate our tests without access to ρ as an oracle.

This latter approach is referred to as blind Martin-Löf randomness.



Two options for ρ-randomness
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Encoding information in ρ

Theorem (BHPS)

There is a left-c.e. semi-measure ρ and some α ∈ (0, 1) such that

I ρ = α · λ; and
I α ≡T ∅′′.



Some consequences

Let ρ be the semi-measure from the theorem on the previous slide.

I Martin-Löf randomness with respect to ρ with access to ρ as
an oracle yields 3-randomness. TOO STRONG!

I Blind randomness with respect to ρ yields Martin-Löf
randomness.

Blind Martin-Löf randomness with respect to ρ seems promising.

Problem: The preservation of blind randomness is not satisfied for
some ρ derived from a left-c.e. semi-measure ρ.
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randomness.
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I Martin-Löf randomness with respect to ρ with access to ρ as
an oracle yields 3-randomness. TOO STRONG!

I Blind randomness with respect to ρ yields Martin-Löf
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randomness.
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Weak 2-randomness

Definition
Let µ be a computable measure.

I A generalized µ-Martin-Löf test is a uniform sequence (Ui )i∈ω
of Σ0

1 (i.e. effectively open) subsets of 2ω such that

lim
i→∞

µ(Ui ) = 0.

I X ∈ 2ω is µ-weakly 2-random, denoted X ∈W2Rµ, if X
passes every µ-Martin-Löf test.

We can also define weak 2-randomness for non-computable
measures such as ρ, as well as blind weak 2-randomness.



The virtues of W2R wrt a semi-measure, 1

Given a left-c.e. semi-measure ρ, a generalized ρ-test is a uniform
sequence (Ui )i∈ω of c.e. subsets of 2<ω such that for each i ,

lim
i→∞

ρ(Ui ) = 0.

Theorem (BHPS)

Let ρ be a left-c.e. semi-measure. Then X passes every generalized
ρ-test if and only X is blind weakly 2-random with respect to ρ.



The virtues of W2R wrt a semi-measure, 2

Unlike blind Martin-Löf randomness with respect to ρ, we have
preservation of randomness for blind weak 2-randomness with
respect to ρ.

Theorem (BHPS)

If X ∈W2R and Φ is a Turing functional such that X ∈ dom(Φ),
then Φ(X ) is blind weakly 2-random with respect to ρ.

Open question: Does blind weak 2-randomness with respect to ρ
satisfy the ex nihilo principle?
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