Algorithmic Randomness and Semi-Measures

Christopher P. Porter Université Paris 7 LIAFA

Joint work with Laurent Bienvenu, Rupert Hölzl, and Paul Shafer

Logic Colloquium 2013 Évora, Portugal 26 July 2013

A motivating question

Suppose we have an algorithmic procedure P that, upon receiving an infinite binary sequence as input, outputs either an infinite binary sequence or a finite binary string.

Q: What is the 'typical' infinite output of P?

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

Ρ

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

Р

 \rightsquigarrow

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

 $\begin{array}{ccc} P & & & \\ & & & \\ & & & \\ & & & \\ & & \Phi : 2^{\omega} \rightarrow 2^{\omega} \cup 2^{<\omega} \end{array}$

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

 \rightarrow

Ρ

a Turing functional $\Phi: 2^{\omega} \rightarrow 2^{\omega} \cup 2^{<\omega}$

the 'typical' infinite output

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

 $\begin{array}{ccc} P & & & \\ & &$

the 'typical' → infinite output

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

Р	\rightsquigarrow	a Turing functional $\Phi: 2^{\omega} \rightarrow 2^{\omega} \cup 2^{<\omega}$
the 'typical' infinite output	$\sim \rightarrow$	random w.r.t. the induced measure

In the case that P produces an infinite output for each infinite input, or does so with probability one, we can already provide a partial answer to Q, at least if we sharpen it in a particular way:

Р	\rightsquigarrow	a Turing functional
		$\Phi: 2^{\omega} \rightarrow 2^{\omega} \cup 2^{<\omega}$
the 'typical'	$\sim \rightarrow$	random w.r.t. the
infinite output		induced measure

Martin-Löf randomness

Definition

Let μ be a computable measure.

A μ-Martin-Löf test is a uniform sequence (U_i)_{i∈ω} of Σ⁰₁ (i.e. effectively open) subsets of 2^ω such that for each i,

$$\mu(\mathcal{U}_i) \leq 2^{-i}.$$

- A sequence X ∈ 2^ω passes the μ-Martin-Löf test (U_i)_{i∈ω} if X ∉ ∩_iU_i.
- X ∈ 2^ω is μ-Martin-Löf random, denoted X ∈ MLR_μ, if X passes every μ-Martin-Löf test.

Induced measures

Let us say that a Turing functional Φ is almost total if $\lambda(dom(\Phi)) = 1$.

Given an almost total Turing functional $\Phi,$ the measure induced by Φ is defined by

$$\lambda_{\Phi}(\mathcal{S}) = \lambda(\{X \in 2^{\omega} : \Phi(X) \in \mathcal{S}\}).$$

for all measurable $\mathcal{S} \subseteq 2^{\omega}$.

Moreover, λ_{Φ} is a computable measure.

Let Φ be a Turing functional.

 \mathcal{Q} : What is the 'typical' infinite output of Φ ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Φ be a Turing functional.

 \mathcal{Q} : What is the 'typical' infinite output of Φ ?

If Φ is almost total, then the typical infinite outputs of Φ are precisely the sequences that are Martin-Löf random with respect to the induced measure λ_{Φ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Φ be a Turing functional.

 \mathcal{Q} : What is the 'typical' infinite output of Φ ?

If Φ is almost total, then the typical infinite outputs of Φ are precisely the sequences that are Martin-Löf random with respect to the induced measure λ_{Φ} .

For every Martin-Löf random input X, Φ(X) is Martin-Löf random with respect to λ_Φ. (randomness preservation)

Let Φ be a Turing functional.

 \mathcal{Q} : What is the 'typical' infinite output of Φ ?

If Φ is almost total, then the typical infinite outputs of Φ are precisely the sequences that are Martin-Löf random with respect to the induced measure λ_{Φ} .

- For every Martin-Löf random input X, Φ(X) is Martin-Löf random with respect to λ_Φ. (randomness preservation)
- For every sequence Y that is Martin-Löf random with respect to λ_Φ, there is some Martin-Löf random X such that Φ(X) = Y. (the ex nihilo principle)

But we don't just want a partial answer!

This is the question that we want to answer:

 Q^* : If Φ yields an infinite output with probability strictly less than one, what is the 'typical' infinite output of Φ ?

Let Φ be a Turing functional such that $\lambda(dom(\Phi)) < 1$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let Φ be a Turing functional such that $\lambda(\operatorname{dom}(\Phi)) < 1$.

For each $\sigma \in 2^{<\omega}$, we can define

$$\lambda_{\Phi}(\sigma) = \lambda(\{X \in 2^{\omega} : \sigma \preceq \Phi(X)\}).$$

Let Φ be a Turing functional such that $\lambda(\operatorname{dom}(\Phi)) < 1$.

For each $\sigma \in 2^{<\omega}$, we can define

$$\lambda_{\Phi}(\sigma) = \lambda(\{X \in 2^{\omega} : \sigma \preceq \Phi(X)\}).$$

But in general, we have

$$\lambda_{\Phi}(\sigma) \geq \lambda_{\Phi}(\sigma 0) + \lambda_{\Phi}(\sigma 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for every $\sigma \in 2^{<\omega}$.

Let Φ be a Turing functional such that $\lambda(\operatorname{dom}(\Phi)) < 1$.

For each $\sigma \in 2^{<\omega}$, we can define

$$\lambda_{\Phi}(\sigma) = \lambda(\{X \in 2^{\omega} : \sigma \preceq \Phi(X)\}).$$

But in general, we have

$$\lambda_{\Phi}(\sigma) \geq \lambda_{\Phi}(\sigma 0) + \lambda_{\Phi}(\sigma 1)$$

for every $\sigma \in 2^{<\omega}$.

 λ_{Φ} is not a measure, but rather a semi-measure.

Let Φ be a Turing functional such that $\lambda(\operatorname{dom}(\Phi)) < 1$.

For each $\sigma \in 2^{<\omega}$, we can define

$$\lambda_{\Phi}(\sigma) = \lambda(\{X \in 2^{\omega} : \sigma \preceq \Phi(X)\}).$$

But in general, we have

$$\lambda_{\Phi}(\sigma) \geq \lambda_{\Phi}(\sigma 0) + \lambda_{\Phi}(\sigma 1)$$

for every $\sigma \in 2^{<\omega}$.

 λ_{Φ} is not a measure, but rather a semi-measure.

In addition, λ_{Φ} is left-c.e., which means that the values $\lambda_{\Phi}(\sigma)$ for $\sigma \in 2^{<\omega}$ are uniformly computably approximable from below.

Returning to our question

 Q^* : If Φ yields an infinite output with probability strictly less than one, what is the 'typical' infinite output of Φ ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Q^* : If Φ yields an infinite output with probability strictly less than one, what is the 'typical' infinite output of Φ ?

To answer Q^* along the same lines as our partial answer to Q for almost total functionals, we need to answer the following:

 Q^* : If Φ yields an infinite output with probability strictly less than one, what is the 'typical' infinite output of Φ ?

To answer Q^* along the same lines as our partial answer to Q for almost total functionals, we need to answer the following:

 $\mathcal{Q}^{**:}$ Which sequences are random with respect to a left-c.e. semi-measure?

Let ρ be a left-c.e. semi-measure.

Let ρ be a left-c.e. semi-measure.

Why not simply replace the measure μ in the definition of μ -Martin-Löf randomness with a left-c.e. semi-measure ρ ?

Let ρ be a left-c.e. semi-measure.

Why not simply replace the measure μ in the definition of μ -Martin-Löf randomness with a left-c.e. semi-measure ρ ?

Let's say a ρ -test is a uniform sequence $(U_i)_{i \in \omega}$ of c.e. subsets of $2^{<\omega}$ such that for each i,

 $\rho(U_i) \leq 2^{-i}.$

Let ρ be a left-c.e. semi-measure.

Why not simply replace the measure μ in the definition of μ -Martin-Löf randomness with a left-c.e. semi-measure ρ ?

Let's say a ρ -test is a uniform sequence $(U_i)_{i \in \omega}$ of c.e. subsets of $2^{<\omega}$ such that for each i,

 $\rho(U_i) \leq 2^{-i}.$

Can we define randomness with respect to a semi-measure in terms of $\rho\text{-tests}?$

The drawback of ρ -tests

Unfortunately, ρ -tests don't behave so nicely:

Proposition (BHPS)

There is a left-c.e. semi-measure ρ such that for any uniform sequence $(U_i)_{i \in \omega}$ of c.e. subsets of $2^{<\omega}$ satisfying

$$\rho(U_i) \leq 2^{-i}$$

for every $i \in \omega$, we have $\bigcap_{i \in \omega} \llbracket U_i \rrbracket = \emptyset$.

Recently, Shen asked the following question:

Recently, Shen asked the following question:

Question

If Φ and Ψ are Turing functionals that induce the same semi-measure, i.e.,

$$\lambda_{\Phi} = \lambda_{\Psi}$$

does it follow that $\Phi(MLR) = \Psi(MLR)$?

Recently, Shen asked the following question:

Question

If Φ and Ψ are Turing functionals that induce the same semi-measure, i.e.,

$$\lambda_{\Phi} = \lambda_{\Psi}$$

does it follow that $\Phi(MLR) = \Psi(MLR)$?

A positive answer to Shen's question would justify the following definition:

Recently, Shen asked the following question:

Question

If Φ and Ψ are Turing functionals that induce the same semi-measure, i.e.,

$$\lambda_{\Phi} = \lambda_{\Psi}$$

does it follow that $\Phi(MLR) = \Psi(MLR)$?

A positive answer to Shen's question would justify the following definition:

Y is random with respect to a semi-measure ρ if for any Turing functional Φ such that $\rho = \lambda_{\Phi}$, there is some $X \in MLR$ such that $\Phi(X) = Y$.

A negative answer to Shen's question

But we have the following.

Proposition (BHPS)

There exist Turing functionals Φ and Ψ such that

 $\lambda_{\Phi} = \lambda_{\Psi}$

and

 $\Phi(\mathsf{MLR}) \neq \Psi(\mathsf{MLR}).$

Trimming a semi-measure back to a measure

If ρ is a left-c.e. semi-measure, we can define

$$\overline{\rho}(\sigma) := \inf_{n} \sum_{\tau \succeq \sigma \& |\tau| = n} \rho(\tau).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Trimming a semi-measure back to a measure

If ρ is a left-c.e. semi-measure, we can define

$$\overline{\rho}(\sigma) := \inf_{n} \sum_{\tau \succeq \sigma \& |\tau| = n} \rho(\tau).$$

One can verify that $\overline{\rho}$ is the largest measure such that $\overline{\rho} \leq \rho$ (but it is not a probability measure in general).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trimming a semi-measure back to a measure

If ρ is a left-c.e. semi-measure, we can define

$$\overline{\rho}(\sigma) := \inf_{n} \sum_{\tau \succeq \sigma \& |\tau| = n} \rho(\tau).$$

One can verify that $\overline{\rho}$ is the largest measure such that $\overline{\rho} \leq \rho$ (but it is not a probability measure in general).

As we will see shortly, $\overline{\rho}$ can be computationally unwieldy.

To define Martin-Löf randomness with respect to the measure $\overline{\rho}$, we have two options.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

To define Martin-Löf randomness with respect to the measure $\overline{\rho}$, we have two options.

We can allow access to p̄ as an oracle in enumerating our tests.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To define Martin-Löf randomness with respect to the measure $\overline{\rho}$, we have two options.

- We can allow access to p̄ as an oracle in enumerating our tests.
- We can enumerate our tests without access to $\overline{\rho}$ as an oracle.

To define Martin-Löf randomness with respect to the measure $\overline{\rho}$, we have two options.

- We can allow access to p̄ as an oracle in enumerating our tests.
- We can enumerate our tests without access to $\overline{\rho}$ as an oracle.

This latter approach is referred to as blind Martin-Löf randomness.

Encoding information in $\overline{\rho}$

Theorem (BHPS)

There is a left-c.e. semi-measure ρ and some $\alpha \in (0,1)$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\overline{\rho} = \alpha \cdot \lambda$$
; and

$$\blacktriangleright \ \alpha \equiv_T \emptyset''.$$

Let ρ be the semi-measure from the theorem on the previous slide.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let ρ be the semi-measure from the theorem on the previous slide.

► Martin-Löf randomness with respect to p̄ with access to p̄ as an oracle yields 3-randomness.

Let ρ be the semi-measure from the theorem on the previous slide.

► Martin-Löf randomness with respect to p̄ with access to p̄ as an oracle yields 3-randomness. TOO STRONG!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let ρ be the semi-measure from the theorem on the previous slide.

► Martin-Löf randomness with respect to p̄ with access to p̄ as an oracle yields 3-randomness. TOO STRONG!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Blind randomness with respect to p̄ yields Martin-Löf randomness.

Let ρ be the semi-measure from the theorem on the previous slide.

- ► Martin-Löf randomness with respect to p̄ with access to p̄ as an oracle yields 3-randomness. TOO STRONG!
- ▶ Blind randomness with respect to p̄ yields Martin-Löf randomness.

Blind Martin-Löf randomness with respect to $\overline{\rho}$ seems promising.

Let ρ be the semi-measure from the theorem on the previous slide.

- ► Martin-Löf randomness with respect to p̄ with access to p̄ as an oracle yields 3-randomness. TOO STRONG!
- ▶ Blind randomness with respect to p̄ yields Martin-Löf randomness.

Blind Martin-Löf randomness with respect to $\overline{\rho}$ seems promising.

Problem: The preservation of blind randomness is not satisfied for some $\overline{\rho}$ derived from a left-c.e. semi-measure ρ .

Weak 2-randomness

Definition

Let μ be a computable measure.

A generalized μ-Martin-Löf test is a uniform sequence (U_i)_{i∈ω} of Σ⁰₁ (i.e. effectively open) subsets of 2^ω such that

$$\lim_{i\to\infty}\mu(\mathcal{U}_i)=0.$$

X ∈ 2^ω is μ-weakly 2-random, denoted X ∈ W2R_μ, if X passes every μ-Martin-Löf test.

We can also define weak 2-randomness for non-computable measures such as $\overline{\rho}$, as well as blind weak 2-randomness.

Given a left-c.e. semi-measure ρ , a *generalized* ρ -test is a uniform sequence $(U_i)_{i \in \omega}$ of c.e. subsets of $2^{<\omega}$ such that for each *i*,

 $\lim_{i\to\infty}\rho(U_i)=0.$

Theorem (BHPS)

Let ρ be a left-c.e. semi-measure. Then X passes every generalized ρ -test if and only X is blind weakly 2-random with respect to $\overline{\rho}$.

The virtues of W2R wrt a semi-measure, 2

Unlike blind Martin-Löf randomness with respect to $\overline{\rho}$, we have preservation of randomness for blind weak 2-randomness with respect to $\overline{\rho}$.

Theorem (BHPS)

If $X \in W2R$ and Φ is a Turing functional such that $X \in dom(\Phi)$, then $\Phi(X)$ is blind weakly 2-random with respect to $\overline{\rho}$.

The virtues of W2R wrt a semi-measure, 2

Unlike blind Martin-Löf randomness with respect to $\overline{\rho}$, we have preservation of randomness for blind weak 2-randomness with respect to $\overline{\rho}$.

Theorem (BHPS)

If $X \in W2R$ and Φ is a Turing functional such that $X \in dom(\Phi)$, then $\Phi(X)$ is blind weakly 2-random with respect to $\overline{\rho}$.

Open question: Does blind weak 2-randomness with respect to $\overline{\rho}$ satisfy the ex nihilo principle?