
Séminaire Automates June 14, 2013

Algorithmic Randomness and
Probabilistic Computation
Christopher Porter, LIAFA

0

1

0 0 0 0 01 1 1 1 1 1

1 1 1 1 1 00 0 0

0 1 0 101 1 0 101 10 0 1 01 1 1 01

Motivation

In computability theory, much research has focused on determining
which problems are solvable by Turing machines and which ones
are not.

✤ Example: For a given set of natural numbers S, is there
an effective procedure for determining membership in S?

If a given problem is shown to be effectively unsolvable, we can
further ask: Just how unsolvable is it?

In fact, there are a number of hierarchies for classifying the
difficulty of solving various problems.

An alternative approach

In these investigations of the unsolvability of problems, the
computations are carried out by Turing machines (often equipped
with an oracle).

What would happen if we were to work with some model of a
probabilistic Turing machine?

In this talk, I will discuss recent work with Laurent Bienvenu and
Antoine Taveneaux on the picture that emerges when we consider a
specific model of probabilistic computation that draws upon the
theory of algorithmic randomness.

Probabilistic computation

As computability theorists, we don’t want to stray too far from
Turing’s original model of oracle computation.

One model that we could use is given by a Turing machine with an
oracle full of randomly generated bits (for instance, produced by the
repeated tosses of a fair coin).

Since with probability one we will produce an algorithmically
random sequence by repeatedly tossing a fair coin, we can assume
that the oracle tape of our machine contains an algorithmically
random sequence.

Algorithmic randomness

There are a number of non-equivalent definition of algorithmic
randomness (several of which will be discussed shortly), and thus
a question naturally arises:

Which definition of algorithmic
randomness should the sequence

on our oracle tape satisfy?

In some cases, it won’t matter which definition of algorithmic
randomness we work with, but in other cases, we will be very
sensitive to the notion of algorithmic randomness that is used as
our oracle.

Our main questions

We will focus on two sorts of questions:

(1) What level of randomness is necessary to guarantee a solution
to a given problem?

First, we will consider the power of computing with random oracles:

(2) Which problems are not solvable with positive probability by
any Turing machine equipped with a sufficiently random oracle?

Second, we will consider the limitations of computing with random
oracles:

A Bit of
Computability

Theory

Fixing some notation, I

2<!

2!

the collection of finite binary strings

the collection of infinite binary sequences

�, ⌧, . . . members of 2<!

X,Y, . . . members of 2!

� � ⌧ � ⌧is an initial segment of (or) � = ⌧

� � X � is an initial segment of X

Fixing some notation, II

J�K = {X 2 2! : � � X}

The standard topology on is given by basic open sets of the form

�

2!

The Lebesgue measure on , denoted , is defined by2!

for . � 2 2<!

�(J�K) = 2�|�|

for (where is the length of), and then we extend to all
Borel sets in the usual manner.

� 2 2<! |�| � �

Computable functions

Let be the collection of partial computable functions. {�i}i2!

For , if we allow our computations to access A as an oracle,
this yields the collection of partial computable functions relative to
A, .

A 2 2!

{�A
i }i2!

Recall that a set S is computable if the characteristic function of S, ,
can be computed by a total computable function.

�S

Turing reducibility

Let .

If there is a B-partial computable function such that , we
say that A is Turing reducible to B (or B computes A), denoted

.

Further, if and , then we say that A is Turing
equivalent to B, denoted

.

The Turing degree of A is defined to be

.

A,B 2 2!

�B �B = �A

A T B

A T B B T A

A ⌘T B

degT (A) = {B 2 2! : A ⌘T B}

The halting problem

The halting problem is the set .

The Turing degree of the halting problem is called .

As we will see, this Turing degree is particularly important for our
discussion.

K = {e : �e(e)#}

;0

 Classes

We will also make use of what are known as classes.

⇧0
1

Let T be a computable tree (a subset of that is closed downwards
under). Then the set of infinite paths through T is denoted [T].

A collection is a class if there is some computable tree T
such that .

⇧0
1

2<!

�

P ✓ 2! ⇧0
1

P = [T]

⇧0
1Note: classes are the effectively closed subclasses of .2!

Completions of Peano arithmetic

A very nice and useful example of a class is given by the
collection of consistent completions of Peano arithmetic.

By Gödel’s incompleteness theorem, there is an infinite collection of
sentences not decidable by PA.

⇧0
1

As we move through the tree determined by Gödel numbers of
formulas of arithmetic (where the branching at the nth level of the
tree corresponds to the nth formula and its negation), when we arrive
at a level corresponding to an undecidable sentence G, we can
consistently add G or its negation.

Sets of PA degree

Let us say of that it has PA degree if there is some completion
of Peano arithmetic such that .

Fact: Every sequence that computes the halting problem computes a
completion of PA, but there are many sequences of PA degree that fail
to compute the halting problem.

X 2 2!

A 2 2! A T X

A Bit of
Algorithmic
Randomness

The main idea

There are a number of ways to motivate the idea of algorithmic
randomness. For instance:

These two ideas can be made precise in such a way that the resulting
definitions of algorithmic randomness are equivalent.

✤ A sequence is algorithmically random if it does not have any
effectively detectable regularities.

✤ A sequence algorithmically random if it satisfies every effectively
specifiable law of probability.

Martin-Löf tests

A Martin-Löf test is a uniform sequence of (effectively
open) subsets of such that for each ,

A sequence passes a Martin-Löf test if

An important fact is that there is a universal Martin-Löf test; that is,
there is a Martin-Löf test such that for every Martin-Löf
test ,

(Ui)i2! ⌃0
1

2! i 2 !

�(Ui) 2�i.

X 2 2! (Ui)i2!

X /2
\

i2!

Ui.

(bUi)i2!

(Ui)i2! \

i2!

Ui ✓
\

i2!

bUi.

Martin-Löf randomness

A sequence is Martin-Löf random if X passes every Martin-
Löf test, or equivalently, if X passes the universal Martin-Löf test.

X 2 2!

Martin-Löf random sequences satisfy all of the standard properties of
“randomly generated sequences”.

✤ the law of large numbers;

✤ the law of the iterated logarithm;

✤ any “law of probability” that can be effectively enumerated.

Despite these nice properties, there are Martin-Löf random sequences
that are outliers (in some sense).

“Ill-behaved” random sequences

Theorem (Kučera-Gács): For every , there is some Martin-Löf
random sequence such that

X � ;0
X ⌘T Y.Y

What’s more, these are precisely the Martin-Löf random sequences of
PA degree.

Theorem (Stephan): For every Martin-Löf random sequence X,
X � ;0 if and only if X has PA degree.

Relative randomness

The notion of Martin-Löf randomness can be relativized to an oracle.

For , an A-Martin-Löf test is a uniform sequence of
2!

i 2 !

�(Ui) 2�i.

A 2 2! (UA
i)i2!

⌃0
1(A) (effectively open relative to A) subsets of such that for

each ,

X 2 2! is A-Martin-Löf random if X passes every A-Martin-Löf test.

2-randomness

If we use as an oracle while enumerating our tests, the resulting
notion of randomness is known as 2-randomness.

;0

2-randomness is strictly stronger than Martin-Löf randomness.

For instance, no 2-random sequence can compute .;0

In general, 2-random sequences behave more like randomly
generated sequences than Martin-Löf random sequences do.

Difference randomness

One last definition of randomness that will be useful for us is known
as difference randomness.

A difference test is a uniform sequence of pairs of
⌃0

1

((Ui,Vi)i2!

 -classes such that for each ,i 2 !

�(Ui \ Vi) 2�i.

X 2 2! is difference random if X passes every difference test.

A surprising result

Theorem (Franklin, Ng): A sequence X is difference random if and
only if X is Martin-Löf random and (if and only if X is
Martin-Löf random and does not have PA degree).

X 6�T ;0

Thus, difference random sequences are slightly more well-behaved
than Martin-Löf random sequences.

Still, difference randomness is weaker than 2-randomness: there are
difference random sequences that are computable from , but no 2-
random sequence has this property.

;0

The Limitations of
Probabilistic Computation

Computing individual sequences

Using our model of probabilistic computation, do we have additional
power to compute individual sequences?

That is, are there non-computable sequences that are computable
with positive probability by a Turing machine with a randomly
generated oracle?

Interestingly, the answer is “No”.

Sacks’ Theorem

Theorem (Sacks): Suppose there is some and an oracle
Turing machine such that �

A 2 2!

Then A is computable.

�({X : �X = �A} > 0.

Proof sketch: By the Lebesgue density theorem, there is some � 2 2<!

such that more than 2/3 of the sequences in the basic open set J�K
compute A. We can then compute the values of A by majority vote.

Computing members of
classes

⇧0
1

Even though probabilistic computation does not allow us to compute
any individual non-computable sequence with positive probability,
we can probabilistically compute a member of certain classes with
positive probability. For example:

⇧0
1

✤ any class consisting entirely of Martin-Löf random
sequences (which must have positive Lebesgue measure);

⇧0
1

Are there classes whose members are difficult to compute
probabilistically?

⇧0
1

Negligible classes⇧0
1

A class is negligible if for every oracle Turing machine ,
the probability of computing a member of using equipped with
a randomly generated oracle is 0. That is,

⇧0
1 P ✓ 2! �

P �

X

i2!

�({X 2 2! : �X
i 2 P}) = 0.

We’ve already encountered an example of a negligible class,
namely the collection of consistent completions of Peano arithmetic.

⇧0
1

Negligibility and randomness

Proposition (BPT): If is a negligible class, then does not
contain any sequence that is random with respect to any computable
probability measure.

P ✓ 2! ⇧0
1 P

If a class does not contain any sequence that is random with
respect to any computable probability measure, does it follow that
 is negligible?

⇧0
1 P

P

Proposition (BPT): There is a non-negligible class that contains
no sequence that is random with respect to any computable
probability measure.

⇧0
1

Deep classes⇧0
1

Closely related to negligible classes are what we refer to as
“deep” classes.

⇧0
1

⇧0
1

A class is deep if there is a computable function h such
that for every n the probability of computing some at the nth
level of the tree T such that via any Turing machine
equipped with a randomly generated oracle is bounded above by
 .

⇧0
1 P ✓ 2!

� 2 2<!

P = [T]

2�h(n)

Some facts about deep classes

Theorem (BPT): Any Martin-Löf random sequence that computes a
member of a deep class is not difference random.⇧0

1

The collection of consistent completions of PA form a deep class
(Levin).

We’ve identified a number of other deep classes that naturally occur
in computability theory (shift-complex sequences, compression
functions, certain sequences related to diagonal non-computability).

Further, we’ve established the level of randomness at which
computing members of deep classes becomes impossible:

The Power of
Probabilistic Computation

The main idea

We now shift gears to discuss the computational power of a Turing
machine equipped with a random oracle.

(1) We consider properties that are satisfied by almost every Turing
degree.

We will consider computational power of a very specific kind:

(2) For each such property, we can calibrate the level of randomness
necessary for the property to hold.

Two key examples

In the early 1980s, Kurtz identified a number of properties that are
satisfied by almost every sequence. Let’s consider two examples:

✤ almost every sequence computes a function that is not
dominated by any computable function (such a sequence is
said to have hyperimmune degree);

✤ almost every sequence computes a 1-generic sequence (an
effective analogue of a Cohen generic sequence).

Kautz’s improvement

In the early 1990s, Kautz improved Kurtz’s results by identifying a
level of randomness that is sufficient to guarantee that these
properties are satisfied:

Theorem (Kautz): (i) Every 2-random sequence computes a function
not dominated by any computable function.
(ii) Every 2-random sequence computes a 1-generic sequence.

Some details, I

Kurtz’s original results can be recast in terms of a probabilistic
algorithm that succeeds with positive probability.

For example, to show that almost every sequence computes a
function that is not dominated by any computable function, the
probabilistic algorithm defines a function f in terms of the collection
of partial computable functions .

For each partial computable function , we do not know if it is total,
so we will use our random oracle to either guess that is defined on
some sufficiently large number N or that it is undefined on N.

{�i}i2!

�i

�i

Some details, II

If we correctly guess that is defined on N, we will eventually see �i

�i(N)# and then we can define . f(N) = �i(N) + 1

If we incorrectly guess that is defined on N, then we are in trouble,
as we will wait forever to see , which will never happen.

�i

If we correctly guess that is undefined on N, this won’t affect us,
since then cannot be total.

�i

If we incorrectly guess that is undefined on N, we will eventually
see that our guess was incorrect, and we can make another guess.

�i

�i

�i(N)#

A key observation

The collection of sequences for which this algorithm fails are
contained in infinitely many levels of the difference test.

Corresponding to the action taken for each of the partial computable
functions is the difference of two classes. This yields a difference
test .

Recall that X passes a difference test if and only if

((Ui,Vi)i2!

⌃0
1

X /2
\

i2!

(Ui \ Vi).

This does not rule out the possibility that for infinitely
many i.

X 2 Ui \ Vi

Strong difference randomness

If we define a sequence to be random if and only if it is not contained
in infinitely many levels of a difference test, we get a new notion of
randomness that we call strong difference randomness.

Every strongly difference random sequence is difference random, but
not vice versa. Moreover, every 2-random sequence is strongly
difference random, but not vice versa.

The power of SDR

If a sequence is strongly difference random, then the probabilistic
algorithm is guaranteed to succeed in producing a fast-growing
function. Thus we have:

Theorem (BP): Every strongly difference random sequence
computes a function not dominated by any computable function.

Theorem (BP): Every strongly difference random sequence
computes a 1-generic.

Moreover, one can show that there is a similar probabilistic algorithm
for computing a 1-generic.

In conclusion

Algorithmic randomness provides a number of powerful tools for
analyzing both the power and limitations of probabilistic
computation.

We have only begun to scratch the surface in our investigations, and
we hope to find further uses of probabilistic computation in
computability theory.

Merci!

