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Motivation

In computability theory, much research has focused on determining 
which problems are solvable by Turing machines and which ones 
are not.

✤ Example:  For a given set of natural numbers S, is there 
an effective procedure for determining membership in S?

If a given problem is shown to be effectively unsolvable, we can 
further ask:  Just how unsolvable is it?

In fact, there are a number of hierarchies for classifying the 
difficulty of solving various problems.



An alternative approach

In these investigations of the unsolvability of problems, the 
computations are carried out by Turing machines (often equipped 
with an oracle).

What would happen if we were to work with some model of a 
probabilistic Turing machine?

In this talk, I will discuss recent work with Laurent Bienvenu and 
Antoine Taveneaux on the picture that emerges when we consider a 
specific model of probabilistic computation that draws upon the 
theory of algorithmic randomness.



Probabilistic computation 

As computability theorists, we don’t want to stray too far from 
Turing’s original model of oracle computation.

One model that we could use is given by a Turing machine with an 
oracle full of randomly generated bits (for instance, produced by the 
repeated tosses of a fair coin).

Since with probability one we will produce an algorithmically 
random sequence by repeatedly tossing a fair coin, we can assume 
that the oracle tape of our machine contains an algorithmically 
random sequence.



Algorithmic randomness

There are a number of non-equivalent definition of algorithmic 
randomness (several of which will be discussed shortly), and thus 
a question naturally arises:

Which definition of algorithmic 
randomness should the sequence

on our oracle tape satisfy?

In some cases, it won’t matter which definition of algorithmic 
randomness we work with, but in other cases, we will be very 
sensitive to the notion of algorithmic randomness that is used as 
our oracle.



Our main questions

We will focus on two sorts of questions:

(1) What level of randomness is necessary to guarantee a solution 
to a given problem?

First, we will consider the power of computing with random oracles:

(2) Which problems are not solvable with positive probability by 
any Turing machine equipped with a sufficiently random oracle?

Second, we will consider the limitations of computing with random 
oracles:



A Bit of 
Computability

Theory



Fixing some notation, I
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2!

the collection of finite binary strings

the collection of infinite binary sequences

�, ⌧, . . . members of 2<!

X,Y, . . . members of 2!

� � ⌧ � ⌧is an initial segment of     (or            ) � = ⌧

� � X � is an initial segment of X



Fixing some notation, II

J�K = {X 2 2! : � � X}

The standard topology on       is given by basic open sets of the form

�

2!

The Lebesgue measure on      , denoted     , is defined by2!

for               . � 2 2<!

�(J�K) = 2�|�|

for                (where       is the length of    ), and then we extend     to all 
Borel sets in the usual manner.  

� 2 2<! |�| � �



Computable functions

Let               be the collection of partial computable functions.    {�i}i2!

For             , if we allow our computations to access A as an oracle, 
this yields the collection of partial computable functions relative to 
A,               .

A 2 2!

{�A
i }i2!

Recall that a set S is computable if the characteristic function of S,     ,               
can be computed by a total computable function.

�S



Turing reducibility

Let                   .

If there is a B-partial computable function       such that                 , we 
say that A is Turing reducible to B (or B computes A), denoted

.

Further, if                 and                , then we say that A is Turing 
equivalent to B, denoted

.

The Turing degree of A is defined to be

.

A,B 2 2!

�B �B = �A

A T B

A T B B T A

A ⌘T B

degT (A) = {B 2 2! : A ⌘T B}



The halting problem

The halting problem is the set                              .

The Turing degree of the halting problem is called    .

As we will see, this Turing degree is particularly important for our 
discussion.

K = {e : �e(e)#}

;0



      Classes

We will also make use of what are known as       classes.  

⇧0
1

Let T be a computable tree (a subset of         that is closed downwards 
under     ). Then the set of infinite paths through T is denoted [T].

A collection              is a       class if there is some computable tree T 
such that               .

⇧0
1

2<!

�

P ✓ 2! ⇧0
1

P = [T ]

⇧0
1Note:       classes are the effectively closed subclasses of     .2!



Completions of Peano arithmetic

A very nice and useful example of a       class is given by the 
collection of consistent completions of Peano arithmetic.

By Gödel’s incompleteness theorem, there is an infinite collection of 
sentences not decidable by PA.

⇧0
1

As we move through the tree determined by Gödel numbers of 
formulas of arithmetic (where the branching at the nth level of the 
tree corresponds to the nth formula and its negation), when we arrive 
at a level corresponding to an undecidable sentence G, we can 
consistently add G or its negation.



Sets of PA degree

Let us say of              that it has PA degree if there is some completion 
of Peano arithmetic             such that                .

Fact:  Every sequence that computes the halting problem computes a 
completion of PA, but there are many sequences of PA degree that fail 
to compute the halting problem.

X 2 2!

A 2 2! A T X
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The main idea

There are a number of ways to motivate the idea of algorithmic 
randomness.  For instance:

These two ideas can be made precise in such a way that the resulting 
definitions of algorithmic randomness are equivalent.

✤ A sequence is algorithmically random if it does not have any 
effectively detectable regularities.

✤ A sequence algorithmically random if it satisfies every effectively 
specifiable law of probability.



Martin-Löf tests

A Martin-Löf test is a uniform sequence              of      (effectively 
open) subsets of      such that for each          ,

A  sequence              passes a Martin-Löf test              if

An important fact is that there is a universal Martin-Löf test; that is, 
there is a Martin-Löf test               such that for every Martin-Löf 
test             ,

(Ui)i2! ⌃0
1

2! i 2 !

�(Ui)  2�i.

X 2 2! (Ui)i2!

X /2
\

i2!

Ui.

( bUi)i2!

(Ui)i2! \

i2!

Ui ✓
\

i2!

bUi.



Martin-Löf randomness

A sequence              is Martin-Löf random if X passes every Martin-
Löf test, or equivalently, if X passes the universal Martin-Löf test.    

X 2 2!

Martin-Löf random sequences satisfy all of the standard properties of 
“randomly generated sequences”.

✤ the law of large numbers;

✤ the law of the iterated logarithm;

✤ any “law of probability” that can be effectively enumerated.

Despite these nice properties, there are Martin-Löf random sequences 
that are outliers (in some sense).



“Ill-behaved” random sequences

Theorem (Kučera-Gács):  For every             , there is some Martin-Löf 
random sequence     such that 

X � ;0
X ⌘T Y.Y

What’s more, these are precisely the Martin-Löf random sequences of 
PA degree.

Theorem (Stephan):  For every Martin-Löf random sequence X,               
X � ;0 if and only if X has PA degree.



Relative randomness

The notion of Martin-Löf randomness can be relativized to an oracle.

For            , an A-Martin-Löf test is a uniform sequence                of             
2!

i 2 !

�(Ui)  2�i.

A 2 2! (UA
i )i2!

⌃0
1(A)           (effectively open relative to A) subsets of      such that for 

each          ,

X 2 2!             is A-Martin-Löf random if X passes every A-Martin-Löf test.



2-randomness

If we use     as an oracle while enumerating our tests, the resulting 
notion of randomness is known as 2-randomness.

;0

2-randomness is strictly stronger than Martin-Löf randomness.

For instance, no 2-random sequence can compute    .;0

In general, 2-random sequences behave more like randomly 
generated sequences than Martin-Löf random sequences do.



Difference randomness

One last definition of randomness that will be useful for us is known 
as difference randomness.

A difference test is a uniform sequence                     of pairs of  
⌃0

1

((Ui,Vi)i2!

     -classes such that for each          ,i 2 !

�(Ui \ Vi)  2�i.

X 2 2!             is difference random if X passes every difference test.



A surprising result

Theorem (Franklin, Ng):  A sequence X is difference random if and 
only if X is Martin-Löf random and                (if and only if X is 
Martin-Löf random and does not have PA degree).               

X 6�T ;0

Thus, difference random sequences are slightly more well-behaved 
than Martin-Löf random sequences.

Still, difference randomness is weaker than 2-randomness:  there are 
difference random sequences that are computable from     , but no 2-
random sequence has this property.

;0



The Limitations of 
Probabilistic Computation



Computing individual sequences

Using our model of probabilistic computation, do we have additional 
power to compute individual sequences?

That is, are there non-computable sequences that are computable 
with positive probability by a Turing machine with a randomly 
generated oracle?

Interestingly, the answer is “No”.



Sacks’ Theorem

Theorem (Sacks):  Suppose there is some               and an oracle 
Turing machine     such that    �

A 2 2!

Then A is computable.

�({X : �X = �A} > 0.

Proof sketch:  By the Lebesgue density theorem, there is some � 2 2<!

such that more than 2/3 of the sequences in the basic open set J�K
compute A.  We can then compute the values of A by majority vote.



Computing members of        
classes

⇧0
1

Even though probabilistic computation does not allow us to compute 
any individual non-computable sequence with positive probability, 
we can probabilistically compute a member of certain       classes with 
positive probability.  For example:

⇧0
1

✤ any       class consisting entirely of Martin-Löf random 
sequences (which must have positive Lebesgue measure);

⇧0
1

Are there       classes whose members are difficult to compute 
probabilistically?

⇧0
1



Negligible      classes⇧0
1

A       class               is negligible if for every oracle Turing machine    , 
the probability of computing a member of      using     equipped with 
a randomly generated oracle is 0.  That is,       

⇧0
1 P ✓ 2! �

P �

X

i2!

�({X 2 2! : �X
i 2 P}) = 0.

We’ve already encountered an example of a negligible       class, 
namely the collection of consistent completions of Peano arithmetic. 

⇧0
1



Negligibility and randomness

Proposition (BPT):  If               is a negligible       class, then     does not
contain any sequence that is random with respect to any computable 
probability measure.    

P ✓ 2! ⇧0
1 P

If a       class      does not contain any sequence that is random with 
respect to any computable probability measure, does it follow that  
    is negligible?

⇧0
1 P

P

Proposition (BPT):  There is a non-negligible       class that contains 
no sequence that is random with respect to any computable 
probability measure.     

⇧0
1



Deep      classes⇧0
1

Closely related to negligible       classes are what we refer to as 
“deep”       classes.

⇧0
1

⇧0
1

A       class               is deep if there is a computable function h such 
that for every n the probability of computing some                at the nth
level of the tree T such that                via any Turing machine 
equipped with a randomly generated oracle is bounded above by 
           .

⇧0
1 P ✓ 2!

� 2 2<!

P = [T ]

2�h(n)



Some facts about deep classes

Theorem (BPT):  Any Martin-Löf random sequence that computes a 
member of a deep       class is not difference random.⇧0

1

The collection of consistent completions of PA form a deep class 
(Levin).

We’ve identified a number of other deep classes that naturally occur 
in computability theory (shift-complex sequences, compression 
functions, certain sequences related to diagonal non-computability).

Further, we’ve established the level of randomness at which 
computing members of deep classes becomes impossible:



The Power of 
Probabilistic Computation



The main idea

We now shift gears to discuss the computational power of a Turing 
machine equipped with a random oracle.  

(1) We consider properties that are satisfied by almost every Turing   
degree.

We will consider computational power of a very specific kind:

(2)  For each such property, we can calibrate the level of randomness 
necessary for the property to hold.



Two key examples

In the early 1980s, Kurtz identified a number of properties that are 
satisfied by almost every sequence.  Let’s consider two examples:

✤ almost every sequence computes a function that is not 
dominated by any computable function (such a sequence is 
said to have hyperimmune degree);

✤ almost every sequence computes a 1-generic sequence (an 
effective analogue of a Cohen generic sequence).



Kautz’s improvement

In the early 1990s, Kautz improved Kurtz’s results by identifying a 
level of randomness that is sufficient to guarantee that these 
properties are satisfied:

Theorem (Kautz):  (i) Every 2-random sequence computes a function 
not dominated by any computable function.
(ii)  Every 2-random sequence computes a 1-generic sequence.



Some details, I

Kurtz’s original results can be recast in terms of a probabilistic 
algorithm that succeeds with positive probability.

For example, to show that almost every sequence computes a 
function that is not dominated by any computable function, the 
probabilistic algorithm defines a function f in terms of the collection 
of partial computable functions              .

For each partial computable function     , we do not know if it is total, 
so we will use our random oracle to either guess that      is defined on 
some sufficiently large number N or that it is undefined on N. 

{�i}i2!

�i

�i



Some details, II

If we correctly guess that      is defined on N, we will eventually see �i

�i(N)#              and then we can define                                 . f(N) = �i(N) + 1

If we incorrectly guess that      is defined on N, then we are in trouble, 
as we will wait forever to see              , which will never happen.  

�i

If we correctly guess that      is undefined on N, this won’t affect us, 
since then       cannot be total.

�i

If we incorrectly guess that      is undefined on N, we will eventually 
see that our guess was incorrect, and we can make another guess.

�i

�i

�i(N)#



A key observation

The collection of sequences for which this algorithm fails are 
contained in infinitely many levels of the difference test.

Corresponding to the action taken for each of the partial computable 
functions is the difference of two      classes.  This yields a difference 
test                    .

Recall that X passes a difference test if and only if

((Ui,Vi)i2!

⌃0
1

X /2
\

i2!

(Ui \ Vi).

This does not rule out the possibility that                      for infinitely 
many i. 

X 2 Ui \ Vi



Strong difference randomness

If we define a sequence to be random if and only if it is not contained 
in infinitely many levels of a difference test, we get a new notion of 
randomness that we call strong difference randomness.

Every strongly difference random sequence is difference random, but 
not vice versa.  Moreover, every 2-random sequence is strongly 
difference random, but not vice versa.



The power of SDR

If a sequence is strongly difference random, then the probabilistic 
algorithm is guaranteed to succeed in producing a fast-growing 
function.  Thus we have:

Theorem (BP):  Every strongly difference random sequence 
computes a function not dominated by any computable function.

Theorem (BP):  Every strongly difference random sequence 
computes a 1-generic.

Moreover, one can show that there is a similar probabilistic algorithm 
for computing a 1-generic.



In conclusion

Algorithmic randomness provides a number of powerful tools for 
analyzing both the power and limitations of probabilistic 
computation.

We have only begun to scratch the surface in our investigations, and 
we hope to find further uses of probabilistic computation in 
computability theory.



Merci!


