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Université Paris 7

LIAFA

Joint work with Laurent Bienvenu and Antoine Taveneaux

Midlands Logic Seminar
University of Birmingham

29 November 2013



Introduction

The goal of this talk is to explain the way in which the theory of
algorithmically random sequences can give us insight into the
limitations of probabilistic computation.

In particular, I will explain certain limitations in terms of two kinds
of effectively closed classes (i.e. Π0

1 classes):

1. negligible Π0
1 classes;

2. deep Π0
1 classes.



Outline of the talk

1. Some basic algorithmic randomness

2. Probabilistic Turing computation
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1 classes

4. Deep Π0
1 classes



1. Some basic algorithmic randomness



A motivating question

What does it mean for a sequence of 0s and 1s to be random?

Consider the following examples:

(1) 00000000000000000000000000000000000000000000000000

(2) 01010101010101010101010101010101010101010101010101

(3) 10100000110101000110101101000111110000111110100011

(4) 00100100001111110110101010001000100001011010001100

(5) 01001001011010111111110101010011110011111111110010

(3) List names of American states alphabetically: 0 = even # of letters, 1 =

odd # of letters.

(4) First fifty digits of the binary expansion of π.

(5) Fifty digits obtained from random.org (atmospheric noise?).



A rough definition of algorithmic randomness

Intuitively, a sequence is algorithmically random if it contains no
“effectively specifiable regularities”.

In the absence of such regularities, algorithmically random
sequences are not detected as non-random by some effective test
for randomness.

In other words, if a sequence contains some “effectively specifiable
regularity”, there is some effective test for randomness that detects
the sequence as non-random.



Towards a formal definition of algorithmic randomness

There are a number of ways one can formally characterize
algorithmic randomness:

I in terms of effective unpredictability

I in terms of effective incompressibility

I in terms of effective typicality ⇐

Today I’ll highlight a definition of randomness given in terms of
statistical tests for randomness, where the statistical tests are
effectively generated.



The statistical definition of randomness (for 2<ω)

Given a finite string σ ∈ 2<ω, we’d like to test whether it is
random.

Null hypothesis: σ is random.

How do we test this hypothesis?

We employ a statistical test T that has a critical region U
corresponding to the significance level α.

If our string is contained in the critical region U, we reject the
hypothesis of randomness at level α (say, α = 0.05 or α = 0.01).



The statistical definition of randomness (for 2ω)

Given an infinite sequence X ∈ 2ω, we’d like to test whether it is
random.

Null hypothesis: X is random.

How do we test this hypothesis?

We test initial segments of X at every level of signficance:
α = 1

2 ,
1
4 ,

1
8 , . . . ,

1
2n , . . .

A test for 2ω is now given by an infinite collection (Ti )i∈ω of tests
for 2<ω, where the critical region Ui of Ti corresponds to the
significance level α = 2−i .



Formally. . .

A Martin-Löf test is a uniform sequence (Ui )i∈ω of computably
enumerable sets of strings such that for each i ,∑

σ∈Ui

2−|σ| ≤ 2−i .

(Think of each Ui as the critical region for a statistical test Ti at significance level
α = 2−i .)

A sequence X ∈ 2ω passes a Martin-Löf test (Ui )i∈ω if there is
some i such that for every k , X �k /∈ Ui .

X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



The measure-theoretic formulation

Given σ ∈ 2<ω,
JσK := {X ∈ 2ω : σ ≺ X}.

These are the basic open sets of 2ω.

The Lebesgue measure on 2ω is defined by

λ(JσK) = 2−|σ|.

Thus we can consider a Martin-Löf test to be a collection (Ui )i∈ω
of uniformly effectively open subsets of 2ω such that

λ(Ui ) ≤ 2−i

for every i .

Moreover, X passes the test (Ui )i∈ω if X /∈ ⋂i Ui .
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Computable measures

We can also define Martin-Löf randomness with respect to any
computable measure on 2ω.

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on we will write µ(σ) instead of µ(JσK).





1

2



1

2

1

2



1

2

1

2

...
...

...
...

...
...



1

2

1

2

1

2

1

2

...
...

...
...

...
...



1

2

1

2

1

2

1

2

1

4

1

4

1

4

1

4

...
...

...
...

...
...



1

2

1

2

...
...

1

2

1

2

1

4

1

4

1

4

1

4

1

8

1

8

1

8

1

8
1

8

1

8

1

8

1

8

...
...

...
...

...
...



1

2

1

2

...
...

...
...

...
...

1

2

1

2

1

4

1

4

1

4

1

4

1

8

1

8

1

8

1

8
1

8

1

8

1

8

1

8

1

16

1

16
1

16

1

16
1

16

1

16

1

16

1

16



...
...

...
...

...
...



...
...

...
...

...
...

1

3



...
...

...
...

...
...

1

3

2

3



1

3

2

3

2

3
1

3

...
...

...
...

...
...



1

3

2

3

2

3
1

3

1

9

2

9

2

9

4

9

...
...

...
...

...
...



...
...

1

3

2

3

2

3
1

3

1

9

2

9

2

9

4

9

1

27

2

27

4

27

2

27

2

27

4

27

4

27

8

27

...
...

...
...

...
...



...
...

...
...

...
...

1

3

2

3

2

3
1

3

1

9

2

9

2

9

4

9

1

27

2

27

4

27

2

27

2

27

4

27

4

27

8

27

1

81

2

81

2

81

4

81

2

81

4

81

4

81

8

81



...
...

...
...

...
...



...
...

...
...

...
...



...
...

...
...

...
...



...
...

...
...

...
...

1

4

3

4



...
...

...
...

...
...

1

4

3

4

1

4



...
...

...
...

...
...

1

4

3

4

3

4
1

4



...
...

...
...

...
...

3

4
1

4



...
...

...
...

...
...

3

4
1

4

2

3

1

3



...
...

...
...

...
...

3

4
1

4

2

3

1

3

1

6



...
...

...
...

...
...

3

4
1

4

2

3

1

3

1

6
1

12



...
...

...
...

...
...

3

4
1

4

1

6
1

12



...
...

...
...

...
...

3

4
1

4

1

6
1

12

3

7

4

7



...
...

...
...

...
...

3

4
1

4

1

6
1

12

3

7

4

7

9

28



...
...

...
...

...
...

3

4
1

4

1

6
1

12

3

7

4

7

9

28

3

7



...
...

...
...

...
...

3

4
1

4

1

6
1

12

9

28

3

7



...
...

...
...

...
...

3

4
1

4

1

6
1

12

9

28

3

7

31

1081

1050

1081



...
...

...
...

...
...

3

4
1

4

1

6
1

12

9

28

3

7

31

1081

1050

1081

31

6486



...
...

...
...

...
...

3

4
1

4

1

6
1

12

9

28

3

7

31

1081

1050

1081

31

6486

1050

6486



Randomness with respect to computable measures

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a sequence (Ui )i∈ω of uniformly
effectively open subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.



2. Probabilistic Turing computation



Two approaches to probabilistic computation

The standard definition of a probabilistic Turing machine is a
non-deterministic Turing machine such that its transitions are
chosen according to some probability distribution.

In the case of that this distribution is uniform, one can imagine
that the machine is equipped with a fair coin that determines how
it will transition from state to state.

Alternatively, one can define a probabilistic machine to be an
oracle Turing machine with some algorithmically random sequence
as an oracle.

Key idea: For the purposes of computing a sequence or some
sequence in a fixed class collection with positive probability, these
two approaches are equivalent.



Turing functionals

Definition
A Turing functional Φ : 2ω → 2ω is a computably enumerable set
of pairs of strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ Φ and
σ � σ′, then τ � τ ′ or τ ′ � τ .
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Turing reducibility

If Φ(B)↓ = A, then we say that A is Turing reducible to B,
denoted A ≤T B.



One limitation

A sequence A ∈ 2ω is computable with positive probability if

λ({X ∈ 2ω : A ≤T X}) > 0.

Theorem (Sacks)

A sequence is computable with positive probability if and only if it
is computable.



Computing members of Π0
1 classes

We cannot probabilistically compute any individual sequence that
is not already Turing computable.

However, the situation is more interesting when we consider certain
collections of sequences.

Let P ⊆ 2ω be a Π0
1 class (or equivalently, the set of infinite paths

through a computable tree).

We investigate whether we can compute some member of P with
positive probability.



Computationally powerful random sequences

It is worth noting that some Martin-Löf random sequences can
compute a member of every Π0

1 class.

I X ∈ 2ω has PA degree if X computes a consistent completion
of Peano arithmetic.

I Every sequence of PA degree computes a member of every Π0
1

class.

I Some Martin-Löf random sequences have PA degree.

Dichotomy: A Martin-Löf random sequence has PA degree if and
only if it computes the halting set K = {e : φe(e)↓}.



3. Negligible Π0
1 classes



When probabilistic computation fails

Negligible Π0
1 classes are precisely those classes such that we

cannot compute some member with positive probability.

To give a precise definition of negligibility, we need to define what
is known as a universal left-c.e. semimeasure.



Left-c.e. semi-measures

A semi-measure ρ : 2<ω → [0, 1] satisfies

I ρ(∅) = 1 and

I ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

We will be particularly interested in left-c.e. semi-measures.

A semi-measure ρ is left-c.e. if each value ρ(σ) is the limit of a
non-decreasing computable sequence of rationals, uniformly in σ.



Semi-measures and Turing functionals

For σ ∈ 2<ω, we define Φ−1(σ) := {X ∈ 2ω : ∃n (X �n, σ) ∈ Φ}.

Proposition

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ, there is a Turing functional
Φ such that ρ = λΦ.



A universal semi-measures

Levin proved the existence of a universal left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e.
semi-measure ρ, there is some c ∈ ω such that

ρ(σ) ≤ c ·M(σ)

for every σ ∈ 2<ω.



The definition of a negligible classe

Let M be a universal left-c.e. semi-measure.

Let M be the largest measure such that M ≤ M, which can be
seen as a universal measure.

Definition
S ⊆ 2ω is negligible if M(S) = 0.



The intuition behind negligibility

Let P be a negligible Π0
1 class.

M(P) = 0 means that the probability of producing some member
of P by means of any Turing functional equipped with any
sufficiently random oracle is 0:

M(P) = 0 if and only if λ
(⋃
i∈ω

Φ−1
i (P)

)
= 0,

where (Φi )i∈ω is an effective enumeration of all Turing functionals.

In particular, for each Φi , λ({X ∈ MLR : Φi (X ) ∈ P}) = 0.



Members of negligible classes

A few observations:

I If a Π0
1 class contains a computable member, it cannot be

negligible.

I Moreover, if a Π0
1 class contains a Martin-Löf random

member, it cannot be negligible, since any Π0
1 class with a

random member must have positive Lebesgue measure.

These two facts are subsumed by the following result:

Proposition (Bienvenu, Porter, Taveneaux)

Let P be a negligible Π0
1 class. Then for every computable measure

µ, P contains no X ∈ MLRµ.



Does the converse hold?

Suppose that P is a Π0
1 class such that P ∩MLRµ = ∅ for every

computable measure µ.

Does it follow that P is negligible? No.

Theorem (Bienvenu, Porter, Taveneaux)

There is a non-negligible Π0
1 class P such that P ∩MLRµ = ∅ for

every computable measure µ.



4. Deep Π0
1 classes



Deep classes: the idea

Depth is a property that is stronger than negligibility for Π0
1 classes.

Instead of considering how difficult it is to produce a path through
a Π0

1 class P, we can consider how difficult it is to produce an
initial segment of some path through P, level by level.

Deep classes are the “most difficult” of Π0
1 classes in this respect.



A few more definitions

Let P ⊆ 2ω be a Π0
1 class.

Let T ext ⊆ 2<ω be the set of extendible nodes of P,

T ext = {σ ∈ 2<ω : JσK ∩ P 6= ∅}.

Thus T ext is the canonical co-c.e. tree such that P = [T ext ] (the
set of infinite paths through T ext).

For each n ∈ ω, T ext
n consists of all strings in T ext of length n.

(I will write T instead of T ext hereafter.)



Deep classes: the definition

Let P be a Π0
1 class and let T be the canonical co-c.e. tree such

that P = [T ].

P is a deep class if there is some computable, non-decreasing,
unbounded function h : ω → ω such that

M(Tn) ≤ 2−h(n),

where M(Tn) =
∑

σ∈Tn
M(σ).

That is, the probability of producing some initial segment of a path
through P is effectively bounded above.



Depth vs. negligibility

It’s clear that every deep class is negligible.

Is every negligible class deep? No.

Theorem (Bienvenu, Porter, Taveneaux)

There is a negligible class P that is not deep.



Why use the co-c.e. tree in the definition of depth?

For every Π0
1 class P there is a computable tree T ⊆ 2<ω such

that P = [T ].

Why can’t we use this computable tree T in the definition of
depth?

In general, T will contain non-extendible nodes, so even if we can
compute some element in Tn, we still may fail to compute an
initial segment of a member of P.

Theorem (Bienvenu, Porter, Taveneaux)

Let T be a computable tree. Then there is no computable order h
such that M(Tn) ≤ 2−h(n) for every n ∈ ω.



Examples of deep classes

There are a number of deep classes that naturally arise in
computability theory.

We don’t, however, have any “natural” examples of negligible
classes that aren’t deep.

For the sake of brevity, I will only consider one example here.



Consistent completions of Peano arithmetic

The following is implicit in work of Levin and Stephan.

Theorem
The Π0

1 class of consistent completions of PA is a deep class.

What exactly does this tell us?

Not only can we not probabilistically compute some consistent
completion of PA with positive probability, but we cannot even
hope to produce longer and longer initial segments of a consistent
completion of PA with sufficiently high probability.



Proving depth

The technique for showing that the class of consistent completions
of PA is deep is what we refer to as a wait and kill argument.

We need to work with some object that we have control over in
some way.

We define a partial computable {0, 1}-valued function φ using the
recursion theorem.

We wait to see a sufficiently large collection of oracles compute
some possible extension of φ (at some place at which φ is currently
undefined).

We then define φ at this place in such a way as to kill off each of
these oracles.



Thank you for your attention!



Completions of PA proof sketch 1

Theorem
The Π0

1 class of consistent completions of PA is a deep class.

Equivalently, we can consider the class P of total extensions of a
universal partial computable {0, 1}-valued function.

Let u(〈e, x〉) = φe(x), where (φe)e∈ω is an effective enumeration
of all partial computable {0, 1}-valued functions.

We will define a partial computable {0, 1}-valued function φe
(where we know e in advance by the recursion theorem), and this
will allow us to show that P is deep.



Completions of PA proof sketch 2

Since we are defining φe , we have control of the values u(〈e, x〉)
for every x ∈ ω.

Let (Ik)k∈ω be an effective collection of intervals forming a
partition of ω, where we have control of 2k+1 values of u inside of
Ik for each k ∈ ω.

Step 1: For each k , we consider the sets

Ek,s = {σ ∈ 2<ω : σ�Ik extends us�Ik},

and wait for a stage s such that

M(Ek,s) ≥ 2−k .



Completions of PA proof sketch 3

Step 2: Pick some y ∈ Ik on which we have yet to define u.

Consider the sets

E 0
k,s(y) = {σ ∈ Ek,s : σ(y) = 0}

and
E 1
k,s(y) = {σ ∈ Ek,s : σ(y) = 1}.

Then M(E i
k,s(y)) ≥ 2−(k+1) for i = 0 or 1 (or both).

If this holds for i = 0, we set u(y) = 1; otherwise we set u(y) = 0.



Completions of PA proof sketch 4

We repeat the process, going back to Step 1.

We can repeat the process at most 2k+1 times (since we have
enough values to work with in Ik).

Eventually, we will get stuck at Step 1.

Setting f (k) = max(Ik), we will have

M({σ : σ�f (k) extends u}) ≤ 2−k .

That is,
M(Tf (k)) ≤ 2−k .


