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Introduction

Over roughly the past fifteen years, the theory of algorithmic
randomness has grown into a mature and fruitful sub-branch of
computability theory.

Despite the many developments in this area of research, one can
make the case that the conceptual foundations of algorithmic
randomness are in need of clarification.

In particular, we might ask:

I What is the relationship between notions of algorithmic
randomness and the notions of randomness that occur in
classical mathematics?

I Does the theory of algorithmic randomness provide a
conceptual analysis of the notion of randomness?



My approach

The approach I will take today is to frame the discussion in terms
of three general problems for the theory of algorithmic randomness:

1. the undergeneration problem;

2. the overgeneration problem; and

3. the disconnect problem.

In fact, these problems are faced by what I call logical definitions
of randomness, of which the definitions of algorithmic randomness
are instances.



Logical definitions of randomness



The main ingredients

The main definitions of algorithmic randomness are given in terms
of the following ingredients:

I a collection of objects O;

I a probability measure µ on O; and

I a collection of properties {Φi}i∈I , expressible in some language
L and satisfiable by objects in O, such that for each i ∈ I ,

µ({x ∈ O : Φi (x)}) = 1.

Hereafter, I will refer to the properties {Φi}i∈I as measure one
properties (where the measure is understood to be the relevant
underlying measure µ).



Putting the ingredients together

From a triple (O, µ, {Φi}i∈I ) satisfying the conditions from the
previous slide, we get a definition D of µ-randomness for objects in
O by stipulating that

x ∈ O is D-random if and only if Φi (x) for every i ∈ I .

One immediate consequence of this definitional framework is that,
assuming that there is some x ∈ O and some i ∈ I such that x
does not satisfy Φi , we can partition O into

I a non-empty collection of D-random objects, and

I a non-empty collection of non-D-random objects.



Valuative randomness

Note that this approach differs radically from one frequently
occurring notion of randomness in classical mathematics, which I
refer to as valuative randomness.

Roughly speaking, the idea behind valuative randomness is this: to
be random is to be the value of a random variable.

Recall that a random variable is simply a measurable function from
a sample space Ω to some space, usually R.

The usage of ‘random’ is not exact here; randomness is usually
attributed to the function itself, but sometimes it is also attributed
to individual outputs of the function.



φ-valued random variables

However, it is important to emphasize that in practice, the range of
a random variable can be any collection of mathematical objects:

I complex numbers

I vectors

I matrices

I functions

I graphs

I closed sets

I Banach spaces

I and so on...

Let φ be a mathematical object such as one from any of the
collections listed above.

Then “the random φ” is simply a φ-valued random variable.



Where exactly is the randomness?

We are supposed to think of a random variable as yielding the
values of some ‘random’ experiment (such as some measurement
of some randomly selected individual).

Thus, a φ-valued random variable is can be understood as yielding
as output a randomly chosen φ from the relevant collection of
objects.

Note that this random experiment/choice isn’t technically part of
the definition of a random variable, but in applications, such
experiments or choices are associated to random variables.



Almost sure events

Random variables can take values that appear to be
“non-random,” at least informally speaking.

For instance, a real-valued random variable can take the value
0.111 . . . .

However, there is a sense in which such outcomes are atypical.

In particular, one can associate a probability distribution to a
random variable, and by means of such a probability distribution,
one can define events that happen almost surely (i.e. with
probability one).

Thus, if some property Θ occurs almost surely with respect to the
probability distribution associated to a φ-valued random variable,
we say,“the random φ has Θ almost surely.”



Comparing the logical and valuative approaches

The key distinction between the logical and valuative approaches is
the former is discriminative while the latter is not.

That is, on the logical approach, one discriminates between the
random and the non-random objects.

In fact, one first specifies the non-random elements, which form a
set of measure zero (with respect to the given measure), and the
remaining elements are taken to be the random elements.

By contrast, on the valuative approach, any object in the relevant
domain of objects can be the value of a random variable (and thus
can be random).

For the most part, on the valuative approach, we never attribute
non-randomness to any objects.



The undergeneration problem



Motivating the undergeneration problem

Recall that a logical definition is formulated in terms of a collection
of “measure one properties” {Φi}i∈I .
The undergeneration problem concerns the choice of the properties
{Φi}i∈I .
For each object x ∈ O, such we define the formula Φx(y) to be

y 6= x .

Then assuming that µ({x}) = 0, we will have

µ({y ∈ O : Φx(y)} = 1.

If µ is continuous (i.e., µ({y}) = 0 for every y ∈ O), then each of
the properties in {Φx}x∈O will be a measure one property, but
together they will yield an empty definition of randomness.



Addressing the undergeneration problem: a first step

We can at least avoid this problem by restricting to countably
many measure one properties.

The countable intersection of sets of measure one is a set of
measure one, so the resulting definition of randomness will be
non-empty.

But this raises a further problem: Which countable collection of
properties do we choose?

The challenge: provide a principled restriction of the properties
{Φi}i∈ω.



Von Mises and undergeneration

The undergeneration problem was first raised for von Mises’
definition of random sequences (which can be seen as a prototype
of the definitions of randomness formulated according to the
logical approach).

Roughly, von Mises’ definition required that a random sequence
have relative limiting frequencies that are invariant under selection
of subsequences by “admissible place selections.”

Von Mises’ contemporaries objected that any place selection could
be counted as admissible according to von Mises’ definition of
admissibility.

Thus, they claimed, von Mises’ definition of randomness yields an
empty collection of random sequences.



Responses to undergeneration

In response to this objection, Abraham Wald proved in 1937 that
for any choice of countably many place selections, the definition of
randomness given in terms of this countable collection is
non-empty.

In fact, Wald showed it has size continuum, while Doob showed
that it has measure one (with respect to the induced product
measure).

In 1940, Church suggested that von Mises’ definition should be
restricted to all computable place selection rules.

This definition was still found to be inadequate, as Ville proved
that not every sequence that is random according to Church’s
definition satisfies the law of the iterated logarithm.



Towards Martin-Löf’s definition of randomness

Given a finite string σ ∈ 2<ω, we’d like to test whether it is of
random.

Null hypothesis: σ is random.

How do we test this hypothesis?

We employ a statistical test T that has a critical region U
corresponding to the significance level α.

If our string is contained in the critical region U, we reject the
hypothesis of randomness at level α (say, α = 0.05 or α = 0.01).



Towards Martin-Löf’s definition of randomness, 2

Given an infinite sequence X ∈ 2ω, we’d like to test whether it is
random.

Null hypothesis: X is random.

How do we test this hypothesis?

We test initial segments of X at every level of signficance:
α = 1

2 ,
1
4 ,

1
8 , . . . ,

1
2n , . . .

A test for 2ω is now given by an infinite collection (Ti )i∈ω of tests
for 2<ω, where the critical region Ui of Ti corresponds to the
significance level α = 2−i .



Formally. . .

A Martin-Löf test is a sequence (Ui )i∈ω of uniformly computably
enumerable sets of strings such that for each i ,∑

σ∈Ui

2−|σ| ≤ 2−i .

(Think of each Ui as the critical region for a statistical test Ti at significance level
α = 2−i .)

A sequence X ∈ 2ω passes a Martin-Löf test (Ui )i∈ω if there is
some i such that for every k , X �k /∈ Ui .

X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



The measure-theoretic formulation

Given σ ∈ 2<ω,
JσK := {X ∈ 2ω : σ ≺ X}.

These are the basic open sets of 2ω.

The Lebesgue measure on 2ω is defined by

λ(JσK) = 2−|σ|.

Thus we can consider a Martin-Löf test to be a collection (Ui )i∈ω
of uniformly effectively open subsets of 2ω such that

λ(Ui ) ≤ 2−i

for every i .

Moreover, X passes the test (Ui )i∈ω if X /∈ ⋂
i Ui .
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Is the undergeneration problem answered?

For each Martin-Löf test (Ui )i∈ω, the set

2ω \
⋂
i∈ω

JUiK

corresponds to one of the measure one properties in the description
of the logical approach to randomness.

Does this choice of measure one properties successfully answer the
undergeneration problem?

Alternative definitions of randomness complicate matters.



Schnorr randomness

Schnorr presented a more constructive definition of randomness as
an alternative to Martin-Löf randomness.

A Schnorr test is a collection (Ui )i∈ω of uniformly effectively open
subsets of 2ω such that

λ(Ui ) = 2−i

for every i .

X ∈ 2ω is Schnorr random, denoted X ∈ SR, if it passes every
Schnorr test.



MLR vs SR

Since every Schnorr test is a Martin-Löf test, a sequence that
passes every Martin-Löf test thus passes every Schnorr test.

Consequently, we have MLR ⊆ SR.

With some work, one can show there is some X ∈ SR \MLR.

As MLR ( SR, we say that Schnorr randomness is weaker than
Martin-Löf randomness (or that Martin-Löf randomness is stronger
than Schnorr randomness).



Weak 2-randomness

Another alternative to Martin-Löf randomness is known as weak
2-randomness.

Instead of strengthening the notion of a test (as in the definition of
a Schnorr test), we can weaken it.

A generalized Martin-Löf test is a collection (Ui )i∈ω of uniformly
effectively open subsets of 2ω such that

lim
i→∞

λ(Ui ) = 0.

X ∈ 2ω is weakly 2-random, denoted X ∈W2R, if it passes every
generalized Martin-Löf test.



MLR vs W2R

Every Martin-Löf test is a generalized Martin-Löf test, and thus we
have W2R ⊆ MLR.

Further, there is some X ∈ MLR \W2R.

In sum, we have

W2R ( MLR ( SR.

Shortly, we will see that there are good reasons to hold that each
of these definitions is provides a legitimate response to the
undergeneration problem.



The overgeneration problem



What is the overgeneration problem?

The overgeneration problem concerns the choice of the measure µ
in logical definitions of randomness.

For any object x ∈ O, there is a measure µx such that µ({x}) = 1
(i.e., the Dirac measure concentrated on x).

Then the only µ-random element of O is x .

If we are too general in our approach to defining randomness, we
run the risk of counting every object as random with respect to
some definition.



Randomness with respect to non-computable measures

One need not appeal to Dirac measures to formulate the
overgeneration problem.

If we consider, say, Martin-Löf randomness with respect to
non-computable measures on 2ω, one can prove the following:

Theorem (Reimann-Slaman)

For every sequence X , X is non-computable if and only if there is
some measure µ such that

(i) µ({X}) = 0 and

(ii) X is Martin-Löf random with respect to µ.

Surprisingly, this fact can be witnessed by a single measure!



Artifactual definitions of randomness

The measures in Reimann-Slaman theorem are admittedly exotic
(for instance, it is necessary that they give some points positive
measure, i.e. they are necessarily discontinuous).

A case can be made that the Reimann-Slaman theorem and related
results are artifacts of the computational framework used to define
randomness (particularly when we consider non-computable
measures).

Of course, we can ask: which notions of randomness are merely
artifactual and which ones are not?



Restricting to computable measures?

However, the measures considered in mathematical practice are
computable measures (the Lebesgue measure, Bernoulli measures
with rational parameter p, etc.).

In fact, it is quite difficult to produce an example of a
non-computable measure, especially without appealing to the
standard tricks from computability theory.



The stability of randomness w.r.t. computable measures

Further, from the point of view of algorithmic randomness, there is
a high degree of stability among the sequences random with
respect to some computable measure:

Theorem (Levin-Kautz)

For every non-computable sequence X , if X is Martin-Löf random
with respect to some computable measure µ, then X is Turing
equivalent to a Martin-Löf random sequence with respect to the
Lebesgue measure.

The Turing equivalence of two sequences means that they can be
effectively transformed into one another.

In the case that µ is computable and continuous, the
transformations in the Levin-Kautz theorem are effectively
uniformly continuous.



Taking stock

We’ve seen some possible responses to the undergeneration
problem, in the form of three specific definitions of algorithmic
randomness.

Further, we’ve seen a possible line of response to the
overgeneration problem, albeit one in need of further development.

The most pressing of the three problems, however, is the
disconnect problem.



The disconnect problem



What is the disconnect problem?

As we’ve seen, each definition D of algorithmic randomness
partitions the domain in O into two non-empty collections:

I the D-random objects, and

I the non-D-random objects.

This is not a feature shared by the uses of randomness in classical
mathematics (such as the examples we’ve seen).

Without any clear connection to the classical uses of randomness
in mathematics, let alone to commonly held intuitions about the
concept of randomness, are we even justified in referring to logical
definitions of randomness as definitions of randomness?



Response one: denial

One way to respond to the disconnect problem is to simply deny
that it’s a problem and simply embrace the disconnect.

Why should the definitions of algorithmic randomness answer to
the uses of randomness in classical mathematics, or to commonly
held intuitions of randomness?

As we will see, this response concedes too much.



Response two: a unique solution

Another way to respond to the disconnect problem, which would
yield a very strong solution to the problem, is to identify a single
“correct” definition of randomness.

Just as the notion of Turing computable function captures the
intuitive conception of effectively calculable function, we could
hope to isolate a single definition of randomness that captures the
intuitive conception of randomness.



A worry about the “unique solution” response

Although some have held that there is a single such correct
definition, such a view has always been articulated for definitions of
random sequence with respect to the Lebesgue measure.

For instance, each of the definitions of randomness introduced
earlier have been held to capture the intuitive conception of
randomness.

But what about definitions of randomness for other objects, and
with respect to different measures?

Should we hope for one general definition of randomness that is
correct for each choice of objects and underlying measure?



Response three: “almost everywhere” typicality

A promising response to the disconnect problem is to appeal to
recent results in algorithmic randomness that reveal deep
connections between various notions of randomness and certain
“almost everywhere” theorems from classical mathematics.



Almost everywhere theorems

In classical analysis, it is very common to encounter theorems that
hold of almost every member of some fixed domain of objects,
usually some subset of the real numbers.

A number of these results involve some collection C of real-valued
functions f : [0, 1]→ R and have the form

(∀f ∈ C )(∀a.e.x ∈ [0, 1]) Φ(x , f ),

where

I ∀a.e. is the almost everywhere quantifier (so that
(∀a.ex ∈ [0, 1]) Φ(x) means that the set {x : Φ(x)} has
Lebesgue measure one), and

I Φ(x , f ) is some predicate such as “f is differentiable at x .”



An informal gloss

Such results are commonly glossed as follows:

If we choose a point x ∈ [0, 1] at random, then with probability
one, the property Φ(·, f ) will hold at x .

Alternatively, we might say that it is the typical behavior of points
x ∈ [0, 1] for the each of the above properties Φ(·, f ) to hold at x ,
or that these properties hold of the random member of [0, 1].

Hereafter, such typical behavior will be referred to as a.e. typicality.



A theorem involving a.e. typicality

Consider the following example of a.e. typicality:

Theorem: For every real-valued function f : [0, 1]→ R of bounded
variation, f is differentiable almost everywhere.

A few observations:

I The function quantifier in this theorem ranges over sets of size
2c, the size of the power set of the continuum.

I The properties “being a point of differentiability of some
real-valued function of bounded variation” and “being a point
of non-differentiability of some real-valued function of
bounded variation” are satisfied by every point in [0,1].



A restricted version of the theorem

Now consider:

For every computable non-decreasing real-valued function
f : [0, 1]→ R, f is differentiable almost everywhere.

A few observations:

I The function quantifier in this theorem now ranges over
countably many functions.

I Thus the property “being a point of differentiability of every
computable real-valued function of bounded variation” is the
intersection of countably many sets of measure one, which is
itself a set of measure one.



The connection to randomness

Theorem (Brattka, Miller, Nies)

z ∈ [0, 1] is Martin-Löf random if and only if every computable,
real-valued function f : [0, 1]→ R of bounded variation is
differentiable at z.

That is, Martin-Löf randomness is necessary and sufficient for this
particular instance of a.e. typicality.



A.e. typicality in classical analysis

In fact, each of the definitions we’ve considered here is necessary
and sufficient for some notion of a.e. typicality.

Every computable real-valued
x ∈ MLR ⇔ function of bounded variation

is differentiable at x .

For every L1-computable real-valued
x ∈ SR ⇔ function f , the Lebesgue differentiation

theorem holds for f at x .

Every computable real-valued
x ∈W2R ⇔ a.e.-differentiable function is

differentiable at x .

There are a number of other examples, some involving definitions
of randomness that we have not considered here.



A.e. typicality in ergodic theory

Birkhoff’s ergodic theorem
x ∈ MLR ⇔ holds at x for all computable

ergodic transformations with respect
to every lower semi-computable function.

Birkhoff’s ergodic theorem
x ∈ SR ⇔ holds at x for all computable

ergodic transformations with respect
to every computable function.

A weak version of Birkhoff’s ergodic
x ∈W2R ⇒ theorem holds at x for all computable

measure-preserving transformations with
respect to every lower semi-computable function.



The emerging picture

There are other promising developments along a slightly different
lines:

I Martin-Löf random closed sets;

I Martin-Löf random Brownian motion;

I effective notions of Hausdorff and packing dimension;

I connections to information theory.

Taken together, these developments provide good grounds for
dismissing the worry that there is a disconnect between algorithmic
definitions of randomness and notions of randomness from classical
mathematics.
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