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Introduction

In algorithmic randomness, a sub-discipline of computability theory,
one major research focus is to study the relationships between
various formal definitions of randomness.

In this talk, I will focus primarily on two equivalent definitions of
random infinite sequence:

I Kolmogorov incompressible sequences, and

I Martin-Löf random sequences.

The equivalence of these two definitions, known as the
Levin-Schnorr theorem, is one of the central results in the theory of
algorithmic randomness.



Introduction (continued)

The goals of today’s talk are to:

I motivate and precisely define these two notions of
randomness;

I outline the proof of their equivalence;

I extend these definitions to computable probability measures
on 2ω; and

I to discuss some recent work on the interplay between

(i) the growth rates of the initial segment complexity of sequences
random with respect to some computable probability measure,
and

(ii) certain properties of this underlying measure (such as
continuity vs. discontinuity).
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1. Definitions of algorithmic randomness



A motivating question

What does it mean for a sequence of 0s and 1s to be random?

Consider the following examples:

(1) 00000000000000000000000000000000000000000000000000

(2) 01010101010101010101010101010101010101010101010101

(3) 10100010110101000110101101000111110000111110100011

(4) 00100100001111110110101010001000100001011010001100

(5) 01001001011010111111110101010011110011111111110010

(3) List names of American states alphabetically: 0 = even # of letters, 1 =

odd # of letters.

(4) First fifty digits of the binary expansion of π.

(5) Fifty digits obtained from random.org (atmospheric noise?).
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Two rough definitions of algorithmic randomness

Intuitively, a sequence is algorithmically random if it contains no
“effectively definable regularities.”

“effectively definable regularities” ≈ patterns definable in some
computable way

Suppose X ∈ 2ω contains no such regularities. Then:

1. Initial segments of X cannot be compressed by an effective
procedure.

2. X cannot be detected as non-random by any effective test for
randomness.
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Kolmogorov Complexity (relative to a prefix-free machine M)

Let M : 2<ω → 2<ω be a Turing machine that is prefix-free, which
means that if M(σ)↓ and σ ≺ τ , then M(τ)↑.

Definition
The prefix-free Kolmogorov complexity of σ ∈ 2<ω relative to M is

KM(σ) = min{|τ | : M(τ)↓ = σ}.

(We set KM(σ) =∞ if σ is not in the range of M.)



Some remarks

Given a prefix-free machine M such that M(τ) = σ, τ is called an
M-description of σ.

KM(σ) is thus the length of the shortest M-description of σ.

We might say that σ is random relative to M if KM(σ) ≈ |σ|, but
we want a definition of randomness that is not dependent upon
our choice of M.

Question: In terms of which machine should we define
randomness?

Answer: We restrict to a universal, prefix-free Turing machine.



Universal Prefix-Free Turing Machines

We can effectively enumerate the collection of all prefix-free Turing
machines {Mi}i∈ω.

Then the function U defined by

U(1e0σ) ' Me(σ)

for every e ∈ ω and every σ ∈ 2<ω is a universal prefix-free Turing
machine.



Kolmogorov complexity

Let U : 2<ω → 2<ω be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ)↓ = σ}.

Question: Has our worry about the choice of Turing machine been
addressed?



Kolmogorov complexity

Let U : 2<ω → 2<ω be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ)↓ = σ}.

Question: Has our worry about the choice of Turing machine been
addressed?



Optimality and Invariance

Theorem (The Optimality Theorem)

Let U be a universal prefix-free Turing machine. Then for every
prefix-free Turing machine M, there is some c ∈ ω such that

KU(σ) ≤ KM(σ) + c

for every σ ∈ 2<ω.

Consequently, we have:

Theorem (The Invariance Theorem)

For every two universal Turing machines U1 and U2, there is some
cU1,U2 ∈ ω such that for every σ ∈ 2<ω,

|KU1(σ)− KU2(σ)| ≤ cU1,U2 .
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Incompressible Strings

Let c ∈ ω. If σ satisfies

K (σ) ≥ |σ| − c ,

then we say that σ is c-incompressible.

Can this be extended to infinite sequences?

Definition
We say that X ∈ 2ω is Kolmogorov incompressible if

(∃c)(∀n) K (X �n) ≥ n − c .

Lebesgue measure one many sequences are Kolmogorov
incompressible.
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The statistical definition of randomness (for 2<ω)

Given a finite string σ ∈ 2<ω, we’d like to test whether it is
random.

Null hypothesis: σ is random.

How do we test this hypothesis?

We employ a statistical test T that has a critical region U
corresponding to the significance level α.

If our string is contained in the critical region U, we reject the
hypothesis of randomness at level α (say, α = 0.05 or α = 0.01).



The statistical definition of randomness (for 2ω)

Given an infinite sequence X ∈ 2ω, we’d like to test whether it is
random.

Null hypothesis: X is random.

How do we test this hypothesis?

We test initial segments of X at every level of signficance:
α = 1

2 ,
1
4 ,

1
8 , . . . ,

1
2n , . . .

A test for 2ω is now given by an infinite collection (Ti )i∈ω of tests
for 2<ω, where the critical region Ui of Ti corresponds to the
significance level α = 2−i .
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Formally. . .

A Martin-Löf test is a sequence (Ui )i∈ω of uniformly computably
enumerable sets of strings such that for each i ,

∑

σ∈Ui

2−|σ| ≤ 2−i .

(Think of each Ui as the critical region for a statistical test Ti at significance level
α = 2−i .)

A sequence X ∈ 2ω passes a Martin-Löf test (Ui )i∈ω if there is
some i such that for every k , X �k /∈ Ui .

X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



The measure-theoretic formulation

Given σ ∈ 2<ω,
JσK := {X ∈ 2ω : σ ≺ X}.

These are the basic open subsets of 2ω.

The Lebesgue measure on 2ω is defined by

λ(JσK) = 2−|σ|.

Thus we can consider a Martin-Löf test to be a collection (Ui )i∈ω
of uniformly effectively open subsets of 2ω such that

λ(Ui ) ≤ 2−i

for every i .

Moreover, X passes the test (Ui )i∈ω if X /∈ ⋂
i Ui .
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2. The Levin-Schnorr theorem



Theorem (Levin, Schnorr)

X ∈ 2ω is Martin-Löf random if and only if

∀n K (X �n) ≥ n − O(1).



Proof idea

For one direction, the strategy is to show that the compressible
sequences c-compressible strings for various c ∈ N can be used to
define a Martin-Löf test.

For the other direction, the strategy is to show that for each
Martin-Löf test, there is some machine that compresses those
sequences that do not pass the test.



Martin-Löf random ⇒ Kolmogorov incompressible

Suppose that X is not Kolmogorov incompressible; that is, for
every i , there is some ni such that

K (X �ni ) < ni − i .

Let Ui = {σ : K (σ) < |σ| − i}. Then

∑

σ∈Ui

2−|σ| ≤
∑

σ∈Ui

2−K(σ)−i ≤ 2−i .

Setting Ui =
⋃
σ∈Ui

JσK, it follows that (Ui )i∈ω is a Martin-Löf test
containing X .



Kolmogorov incompressible ⇒ Martin-Löf random

Suppose that X ∈ ⋂
i∈ω Ui for some Martin-Löf test (Ui )i∈ω.

Idea: Build a prefix-free machine M such that if σ determines an
open subset of U2i , then we set M(τ) = σ for some τ with
|τ | ≤ |σ| − i .

Kraft’s inequality: If
∑

i∈ω 2−ni ≤ 1, then there is an instantaneous
code consisting of codewords with lengths in (ni )i∈ω.

Effective version of Kraft’s inequality: Given an effective list of
pairs (σi , ni ) such that

∑
i∈ω 2−ni ≤ 1, there is a prefix-free

machine M such that KM(σi ) ≤ ni .
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3. Randomness with respect to a computable
measure



Computable measures

We can also define Martin-Löf randomness with respect to any
computable measure on 2ω.

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 ∩ [0, 1] such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω. (Here Q2 = {m2n : m, n ∈ ω}.)

From now on we will write µ(σ) instead of µ(JσK).



MLR with respect to a computable measure

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a sequence (Ui )i∈ω of uniformly
effectively open subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.

Hereafter, we will refer to a sequence as proper if it is random with
respect to some computable measure.



Atomic computable measures

A measure µ is atomic if there is some X ∈ 2ω such that
µ({X}) > 0; otherwise µ is continuous.

Note that if X is an atom of a computable measure µ, then
X ∈ MLRµ.

Every computable sequence is the atom of some computable
measure, namely the Dirac measure δX that concentrates all of its
measure on X .

In fact, the converse holds: if X is the atom of a computable
measure, then X is a computable sequence.



Generalizing the Levin-Schnorr Theorem

Theorem (Levin, Schnorr)

X ∈ 2ω is Martin-Löf random if and only if

∀n K (X �n) ≥ n − O(1).

Theorem
Let µ be a computable measure on 2ω. Then X ∈ 2ω is
µ-Martin-Löf random if and only if

∀n K (X �n) ≥ − log(µ(X �n))− O(1).
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X ∈ 2ω is Martin-Löf random if and only if

∀n K (X �n) ≥ n − O(1).

Theorem
Let µ be a computable measure on 2ω. Then X ∈ 2ω is
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4. The initial segment complexity of proper
sequences



Complex sequences

An order function h : ω → ω is an unbounded, non-decreasing
function.

Definition
X ∈ 2ω is complex if there is a computable order function
h : ω → ω such that

∀n K (X �n) ≥ h(n).



Proper sequences and complexity

Suppose that X is Martin-Löf random with respect to a
computable measure µ.

Then by the generalized version of the Levin-Schnorr theorem,

∀n K (X �n) ≥ − log(µ(X �n))− O(1).

Note that this does not imply that X is complex, since the
function n 7→ − log(µ(X �n)) is in most cases not computable but
only X -computable.

Are there conditions that guarantee that a proper sequence is
complex?



A priori complexity

Definition

I A semi-measure is a function ρ : 2<ω → [0, 1] satisfying

(i) ρ(ε) = 1 and
(ii) ρ(σ) ≥ ρ(σ0) + ρ(σ1).

I A semi-measure ρ is left-c.e. if ρ is computably approximable
from below.

Fact: There exists a universal left-c.e. semi-measure M. That is,
for every left-c.e. semi-measure ρ there is some c such that

c ·M(σ) ≥ ρ(σ)

for every σ.

We define the a priori complexity of σ ∈ 2<ω to be

KA(σ) := − logM(σ).
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A sufficient condition for complexity

Theorem (Hölzl, Merkle, Porter)

If X ∈ 2ω is Martin-Löf random with respect to a computable,
continuous measure µ, then X is complex.

This follows from the following two results.

I Let µ be a computable, continuous measure and let
X ∈ MLRµ. Then X computes some Y ∈ MLR by an effective
procedure that is total on all oracles.

I If Y is complex and X computes Y by an effective procedure
that is total on all oracles, then X is complex.
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What about the converse?

The converse of the previous theorem doesn’t hold, as there are
complex sequences that are not proper.

However, we do have a partial converse.

Theorem (Hölzl, Merkle, Porter)

Let X ∈ 2ω be proper. If X is complex, then X ∈ MLRµ for some
computable, continuous measure µ.



A useful lemma

Lemma
Suppose that

I µ is a computable measure,

I X ∈ MLRµ is non-computable,

I P is a Π0
1 class with no computable members, and

I X ∈ P.

Then there is some computable, continuous measure ν such that
X ∈ MLRν .
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Establishing the partial converse

Theorem
Let X ∈ 2ω be proper. If X is complex, then X ∈ MLRµ for some
computable, continuous measure µ.

To prove this theorem, let h be the computable order function that
witnesses that X is complex.

Then we apply the previous lemma to the Π0
1 class

{A ∈ 2ω : K (A�n) ≥ h(n)},

which contains X but no computable sequences.
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Connection to semigenericity

Definition
X ∈ 2ω is semigeneric if X is non-computable and for every Π0

1

class P with X ∈ P, P contains some computable member.

Theorem (Hölzl, Merkle, Porter)

Let X ∈ 2ω be proper. The following are equivalent:

1. X ∈ MLRµ for some computable, continuous µ.

2. X is complex.

3. X is not semigeneric.



A follow-up question

Let µ be a computable, continuous measure.

Since every sequence that is random with respect µ is complex, is
there a single computable order function that witnesses the
complexity of µ-random sequences?

Is there a least such function (up to an additive constant)?



A follow-up result

Definition
Let µ be a continuous measure. Then the granularity function of
µ, denoted gµ, is the order function mapping n to the least ` such
that µ(σ) < 2−n for every σ of length `.

Theorem (Hölzl, Merkle, Porter)

Let µ be a computable, continuous measure and let X ∈ MLRµ.
Then we have

∀n KA(X �n) ≥ g−1
µ (n)− O(1).
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Some facts about the granularity of a computable measure

I If µ is exactly computable, that is, µ is Q2-valued and the
function σ 7→ µ(σ) is a computable function, then gµ is
computable.

I However, there is a computable, continuous measure µ such
that the granularity function gµ of µ is not computable.

I For every computable, continuous measure µ, there is a
computable order function f : ω → ω such that

|f (n)− gµ(n)−1| ≤ O(1).

Such a function f provides as a global computable lower bound for
the initial segment complexity of every µ-random sequence.



Some facts about the granularity of a computable measure

I If µ is exactly computable, that is, µ is Q2-valued and the
function σ 7→ µ(σ) is a computable function, then gµ is
computable.

I However, there is a computable, continuous measure µ such
that the granularity function gµ of µ is not computable.

I For every computable, continuous measure µ, there is a
computable order function f : ω → ω such that

|f (n)− gµ(n)−1| ≤ O(1).

Such a function f provides as a global computable lower bound for
the initial segment complexity of every µ-random sequence.



Some facts about the granularity of a computable measure

I If µ is exactly computable, that is, µ is Q2-valued and the
function σ 7→ µ(σ) is a computable function, then gµ is
computable.

I However, there is a computable, continuous measure µ such
that the granularity function gµ of µ is not computable.

I For every computable, continuous measure µ, there is a
computable order function f : ω → ω such that

|f (n)− gµ(n)−1| ≤ O(1).

Such a function f provides as a global computable lower bound for
the initial segment complexity of every µ-random sequence.



A question about uniformity

Question
If we have a computable, atomic measure µ such that

∀X ∈ 2ω (X ∈ MLRµ \ Atomsµ ⇒ X is complex),

is there a computable, continuous measure ν such that

MLRµ \ Atomsµ ⊆ MLRν?



An answer

Theorem (Hölzl, Merkle, Porter)

There is a computable, atomic measure µ such that

I every X ∈ MLRµ \ Atomsµ is complex but

I there is no computable, continuous measure ν such that
MLRµ \ Atomsµ ⊆ MLRν .
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Let JσiK be the i th neighborhood.

One can verify that

I if φi is partial, then JσiK ∩MLRµ ⊆ Atomsµ;

I if φi is total, then JσiK ∩ Atomsµ = ∅ and every
X ∈ MLRµ ∩ JσiK is complex.

Lastly, if there is some computable, continuous ν such that
MLRµ \ Atomsµ ⊆ MLRν , then there is a computable order f = φi
such that for every X ∈ MLRµ \ Atomsµ,

KA(X �n) ≥ f −1(n)− O(1)

for every n, which yields a contradiction.



Thank you!


