Algorithmic randomness for non-uniform probability measures

Christopher P. Porter University of Florida

Joint work with Rupert Hölzl and Wolfgang Merkle

UC Irvine Logic Seminar May 11, 2015

Introduction

In algorithmic randomness, a sub-discipline of computability theory, one major research focus is to study the relationships between various formal definitions of randomness.

In this talk, I will focus primarily on two equivalent definitions of random infinite sequence:

- Kolmogorov incompressible sequences, and
- Martin-Löf random sequences.

The equivalence of these two definitions, known as the Levin-Schnorr theorem, is one of the central results in the theory of algorithmic randomness.

Introduction (continued)

The goals of today's talk are to:

- motivate and precisely define these two notions of randomness;
- outline the proof of their equivalence;
- extend these definitions to computable probability measures on 2^{\u03c6}; and
- to discuss some recent work on the interplay between
 - (i) the growth rates of the initial segment complexity of sequences random with respect to some computable probability measure, and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ii) certain properties of this underlying measure (such as continuity vs. discontinuity).

Outline

- 1. Definitions of algorithmic randomness
- 2. The Levin-Schnorr theorem
- 3. Randomness with respect to a computable measure
- 4. The initial segment complexity of proper sequences

・ロト・日本・モート モー うへぐ

1. Definitions of algorithmic randomness

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

(3) List names of American states alphabetically: 0 = even # of letters, 1 = odd # of letters.

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

(3) List names of American states alphabetically: 0 = even # of letters, 1 = odd # of letters.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(4) First fifty digits of the binary expansion of π .

What does it mean for a sequence of 0s and 1s to be random? Consider the following examples:

(3) List names of American states alphabetically: 0 = even # of letters, 1 = odd # of letters.

(4) First fifty digits of the binary expansion of π .

(5) Fifty digits obtained from random.org (atmospheric noise?).

Two rough definitions of algorithmic randomness

Intuitively, a sequence is algorithmically random if it contains no "effectively definable regularities."

"effectively definable regularities" $\,\approx\,$ patterns definable in some computable way

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose $X \in 2^{\omega}$ contains no such regularities. Then:

Two rough definitions of algorithmic randomness

Intuitively, a sequence is algorithmically random if it contains no "effectively definable regularities."

"effectively definable regularities" $\,\approx\,$ patterns definable in some computable way

Suppose $X \in 2^{\omega}$ contains no such regularities. Then:

1. Initial segments of X cannot be compressed by an effective procedure.

Two rough definitions of algorithmic randomness

Intuitively, a sequence is algorithmically random if it contains no "effectively definable regularities."

"effectively definable regularities" $\,\approx\,$ patterns definable in some computable way

Suppose $X \in 2^{\omega}$ contains no such regularities. Then:

- 1. Initial segments of X cannot be compressed by an effective procedure.
- 2. X cannot be detected as non-random by any effective test for randomness.

Kolmogorov Complexity (relative to a prefix-free machine M)

Let $M: 2^{<\omega} \to 2^{<\omega}$ be a Turing machine that is *prefix-free*, which means that if $M(\sigma)\downarrow$ and $\sigma \prec \tau$, then $M(\tau)\uparrow$.

Definition The prefix-free Kolmogorov complexity of $\sigma \in 2^{<\omega}$ relative to M is

$$K_M(\sigma) = \min\{|\tau| : M(\tau) \downarrow = \sigma\}.$$

(日) (同) (三) (三) (三) (○) (○)

(We set $K_M(\sigma) = \infty$ if σ is not in the range of M.)

Some remarks

Given a prefix-free machine M such that $M(\tau) = \sigma$, τ is called an *M*-description of σ .

 $K_M(\sigma)$ is thus the length of the shortest *M*-description of σ .

We might say that σ is random relative to M if $K_M(\sigma) \approx |\sigma|$, but we want a definition of randomness that is not dependent upon our choice of M.

Question: In terms of which machine should we define randomness?

Answer: We restrict to a *universal*, prefix-free Turing machine.

We can effectively enumerate the collection of all prefix-free Turing machines $\{M_i\}_{i\in\omega}$.

Then the function U defined by

$$U(1^e 0\sigma) \simeq M_e(\sigma)$$

for every $e \in \omega$ and every $\sigma \in 2^{<\omega}$ is a *universal prefix-free Turing machine*.

Kolmogorov complexity

Let $U: 2^{<\omega} \rightarrow 2^{<\omega}$ be a universal, prefix-free Turing machine.

For each $\sigma \in 2^{<\omega}$, the *prefix-free Kolmogorov complexity* of σ is defined to be

$$K(\sigma) := \min\{|\tau| : U(\tau) \downarrow = \sigma\}.$$

Kolmogorov complexity

Let $U: 2^{<\omega} \rightarrow 2^{<\omega}$ be a universal, prefix-free Turing machine.

For each $\sigma \in 2^{<\omega}$, the *prefix-free Kolmogorov complexity* of σ is defined to be

$$K(\sigma) := \min\{|\tau| : U(\tau) \downarrow = \sigma\}.$$

Question: Has our worry about the choice of Turing machine been addressed?

Optimality and Invariance

Theorem (The Optimality Theorem)

Let U be a universal prefix-free Turing machine. Then for every prefix-free Turing machine M, there is some $c \in \omega$ such that

$$K_U(\sigma) \leq K_M(\sigma) + c$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for every $\sigma \in 2^{<\omega}$.

Optimality and Invariance

Theorem (The Optimality Theorem)

Let U be a universal prefix-free Turing machine. Then for every prefix-free Turing machine M, there is some $c \in \omega$ such that

$$K_U(\sigma) \leq K_M(\sigma) + c$$

for every $\sigma \in 2^{<\omega}$.

Consequently, we have:

Theorem (The Invariance Theorem)

For every two universal Turing machines U_1 and U_2 , there is some $c_{U_1,U_2} \in \omega$ such that for every $\sigma \in 2^{<\omega}$,

$$|\mathsf{K}_{U_1}(\sigma) - \mathsf{K}_{U_2}(\sigma)| \leq c_{U_1,U_2}.$$

Incompressible Strings

Let $c \in \omega$. If σ satisfies

 $K(\sigma) \geq |\sigma| - c,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

then we say that σ is *c*-incompressible.

Can this be extended to infinite sequences?

Incompressible Strings

Let $c \in \omega$. If σ satisfies

 $K(\sigma) \geq |\sigma| - c,$

then we say that σ is *c*-incompressible.

Can this be extended to infinite sequences?

Definition We say that $X \in 2^{\omega}$ is Kolmogorov incompressible if

 $(\exists c)(\forall n) \ K(X \restriction n) \geq n - c.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lebesgue measure one many sequences are Kolmogorov incompressible.

The statistical definition of randomness (for $2^{<\omega}$)

Given a finite string $\sigma \in 2^{<\omega},$ we'd like to test whether it is random.

Null hypothesis: σ is random.

How do we test this hypothesis?

We employ a statistical test T that has a critical region U corresponding to the significance level α .

If our string is contained in the critical region U, we reject the hypothesis of randomness at level α (say, $\alpha = 0.05$ or $\alpha = 0.01$).

The statistical definition of randomness (for 2^{ω})

Given an infinite sequence $X \in 2^{\omega}$, we'd like to test whether it is random.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Null hypothesis: X is random.

How do we test this hypothesis?

The statistical definition of randomness (for 2^{ω})

Given an infinite sequence $X \in 2^{\omega}$, we'd like to test whether it is random.

Null hypothesis: X is random.

How do we test this hypothesis?

We test initial segments of X at every level of significance: $\alpha = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^n}, \dots$

A test for 2^{ω} is now given by an infinite collection $(\mathcal{T}_i)_{i \in \omega}$ of tests for $2^{<\omega}$, where the critical region U_i of \mathcal{T}_i corresponds to the significance level $\alpha = 2^{-i}$.

Formally...

A *Martin-Löf test* is a sequence $(U_i)_{i \in \omega}$ of uniformly computably enumerable sets of strings such that for each *i*,

$$\sum_{\sigma\in U_i} 2^{-|\sigma|} \le 2^{-i}.$$

(Think of each U_i as the critical region for a statistical test T_i at significance level $\alpha = 2^{-i}$.)

A sequence $X \in 2^{\omega}$ passes a Martin-Löf test $(U_i)_{i \in \omega}$ if there is some *i* such that for every *k*, $X \upharpoonright k \notin U_i$.

 $X \in 2^{\omega}$ is *Martin-Löf random*, denoted $X \in MLR$, if X passes *every* Martin-Löf test.

The measure-theoretic formulation

Given
$$\sigma \in 2^{<\omega}$$
,
$$[\![\sigma]\!] := \{ X \in 2^{\omega} : \sigma \prec X \}.$$

These are the basic open subsets of 2^{ω} .

The Lebesgue measure on 2^{ω} is defined by

$$\lambda(\llbracket \sigma \rrbracket) = 2^{-|\sigma|}.$$

Thus we can consider a Martin-Löf test to be a collection $(\mathcal{U}_i)_{i \in \omega}$ of uniformly effectively open subsets of 2^{ω} such that

$$\lambda(\mathcal{U}_i) \leq 2^{-i}$$

for every *i*.

Moreover, X passes the test $(\mathcal{U}_i)_{i \in \omega}$ if $X \notin \bigcap_i \mathcal{U}_i$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

・ロト ・回ト ・ヨト ・ヨト ヨー りへぐ

・ロト ・御ト ・ヨト ・ヨト ヨー のへで

・ロト ・御ト ・ヨト ・ヨト ヨー のへで

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ● 三 ● ○ ○ ○

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

- ◆ □ ▶ → 御 ▶ → 匡 ▶ → 匡 → りへで

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

→ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

2. The Levin-Schnorr theorem

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem (Levin, Schnorr) $X \in 2^{\omega}$ is Martin-Löf random if and only if

 $\forall n \ K(X \restriction n) \geq n - O(1).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof idea

For one direction, the strategy is to show that the compressible sequences *c*-compressible strings for various $c \in \mathbb{N}$ can be used to define a Martin-Löf test.

For the other direction, the strategy is to show that for each Martin-Löf test, there is some machine that compresses those sequences that do not pass the test.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Martin-Löf random \Rightarrow Kolmogorov incompressible

Suppose that X is not Kolmogorov incompressible; that is, for every i, there is some n_i such that

$$K(X \upharpoonright n_i) < n_i - i.$$

Let $U_i = \{\sigma : K(\sigma) < |\sigma| - i\}$. Then

$$\sum_{\sigma \in \mathcal{U}_i} 2^{-|\sigma|} \leq \sum_{\sigma \in \mathcal{U}_i} 2^{-\mathcal{K}(\sigma)-i} \leq 2^{-i}.$$

Setting $U_i = \bigcup_{\sigma \in U_i} \llbracket \sigma \rrbracket$, it follows that $(U_i)_{i \in \omega}$ is a Martin-Löf test containing X.

Kolmogorov incompressible \Rightarrow Martin-Löf random

Suppose that $X \in \bigcap_{i \in \omega} \mathcal{U}_i$ for some Martin-Löf test $(\mathcal{U}_i)_{i \in \omega}$.

Idea: Build a prefix-free machine M such that if σ determines an open subset of \mathcal{U}_{2i} , then we set $M(\tau) = \sigma$ for some τ with $|\tau| \leq |\sigma| - i$.

Kolmogorov incompressible \Rightarrow Martin-Löf random

Suppose that $X \in \bigcap_{i \in \omega} \mathcal{U}_i$ for some Martin-Löf test $(\mathcal{U}_i)_{i \in \omega}$.

Idea: Build a prefix-free machine M such that if σ determines an open subset of \mathcal{U}_{2i} , then we set $M(\tau) = \sigma$ for some τ with $|\tau| \leq |\sigma| - i$.

Kraft's inequality: If $\sum_{i \in \omega} 2^{-n_i} \leq 1$, then there is an instantaneous code consisting of codewords with lengths in $(n_i)_{i \in \omega}$.

Kolmogorov incompressible \Rightarrow Martin-Löf random

Suppose that $X \in \bigcap_{i \in \omega} \mathcal{U}_i$ for some Martin-Löf test $(\mathcal{U}_i)_{i \in \omega}$.

Idea: Build a prefix-free machine M such that if σ determines an open subset of \mathcal{U}_{2i} , then we set $M(\tau) = \sigma$ for some τ with $|\tau| \leq |\sigma| - i$.

Kraft's inequality: If $\sum_{i \in \omega} 2^{-n_i} \leq 1$, then there is an instantaneous code consisting of codewords with lengths in $(n_i)_{i \in \omega}$.

Effective version of Kraft's inequality: Given an effective list of pairs (σ_i, n_i) such that $\sum_{i \in \omega} 2^{-n_i} \leq 1$, there is a prefix-free machine M such that $K_M(\sigma_i) \leq n_i$.

3. Randomness with respect to a computable measure

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Computable measures

We can also define Martin-Löf randomness with respect to any computable measure on 2^{ω} .

Definition

A measure μ on 2^{ω} is *computable* if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is computable as a real-valued function.

In other words, μ is computable if there is a computable function $\hat{\mu}:2^{<\omega}\times\omega\to\mathbb{Q}_2\cap[0,1]$ such that

$$|\mu(\llbracket \sigma \rrbracket) - \hat{\mu}(\sigma, i)| \le 2^{-i}$$

for every $\sigma \in 2^{<\omega}$ and $i \in \omega$. (Here $\mathbb{Q}_2 = \{\frac{m}{2^n} : m, n \in \omega\}$.)

From now on we will write $\mu(\sigma)$ instead of $\mu(\llbracket \sigma \rrbracket)$.

MLR with respect to a computable measure

Definition

Let μ be a computable measure.

A μ-Martin-Löf test is a sequence (U_i)_{i∈ω} of uniformly effectively open subsets of 2^ω such that for each i,

$$\mu(\mathcal{U}_i) \leq 2^{-i}.$$

X ∈ 2^ω is μ-Martin-Löf random, denoted X ∈ MLR_μ, if X passes every μ-Martin-Löf test.

Hereafter, we will refer to a sequence as *proper* if it is random with respect to some computable measure.

Atomic computable measures

A measure μ is *atomic* if there is some $X \in 2^{\omega}$ such that $\mu(\{X\}) > 0$; otherwise μ is *continuous*.

Note that if X is an atom of a computable measure μ , then $X \in MLR_{\mu}$.

Every computable sequence is the atom of some computable measure, namely the Dirac measure δ_X that concentrates all of its measure on X.

In fact, the converse holds: if X is the atom of a computable measure, then X is a computable sequence.

Generalizing the Levin-Schnorr Theorem

Theorem (Levin, Schnorr) $X \in 2^{\omega}$ is Martin-Löf random if and only if

 $\forall n \ K(X \restriction n) \geq n - O(1).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalizing the Levin-Schnorr Theorem

Theorem (Levin, Schnorr)

 $X\in 2^\omega$ is Martin-Löf random if and only if

 $\forall n \ K(X \upharpoonright n) \geq n - O(1).$

Theorem

Let μ be a computable measure on 2^{ω} . Then $X \in 2^{\omega}$ is μ -Martin-Löf random if and only if

$$\forall n \ K(X \restriction n) \geq -\log(\mu(X \restriction n)) - O(1).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
4. The initial segment complexity of proper sequences

An order function $h: \omega \to \omega$ is an unbounded, non-decreasing function.

Definition $X \in 2^{\omega}$ is *complex* if there is a computable order function $h: \omega \to \omega$ such that

 $\forall n \ K(X \upharpoonright n) \geq h(n).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proper sequences and complexity

Suppose that X is Martin-Löf random with respect to a computable measure μ .

Then by the generalized version of the Levin-Schnorr theorem,

$$\forall n \ K(X \restriction n) \geq -\log(\mu(X \restriction n)) - O(1).$$

Note that this does not imply that X is complex, since the function $n \mapsto -\log(\mu(X \upharpoonright n))$ is in most cases not computable but only X-computable.

Are there conditions that guarantee that a proper sequence is complex?

A priori complexity

Definition

- A semi-measure is a function ρ : 2^{<ω} → [0, 1] satisfying
 (i) ρ(ε) = 1 and
 (ii) ρ(σ) ≥ ρ(σ0) + ρ(σ1).
- A semi-measure ρ is *left-c.e.* if ρ is computably approximable from below.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A priori complexity

Definition

A semi-measure is a function ρ : 2^{<ω} → [0, 1] satisfying
 (i) ρ(ε) = 1 and
 (ii) ρ(σ) ≥ ρ(σ0) + ρ(σ1).

A semi-measure ρ is *left-c.e.* if ρ is computably approximable from below.

Fact: There exists a *universal* left-c.e. semi-measure M. That is, for every left-c.e. semi-measure ρ there is some c such that

$$c \cdot M(\sigma) \ge \rho(\sigma)$$

for every σ .

A priori complexity

Definition

A semi-measure is a function ρ : 2^{<ω} → [0, 1] satisfying
 (i) ρ(ε) = 1 and
 (ii) ρ(σ) ≥ ρ(σ0) + ρ(σ1).

A semi-measure ρ is *left-c.e.* if ρ is computably approximable from below.

Fact: There exists a *universal* left-c.e. semi-measure M. That is, for every left-c.e. semi-measure ρ there is some c such that

$$c \cdot M(\sigma) \ge \rho(\sigma)$$

for every σ .

We define the *a priori complexity* of $\sigma \in 2^{<\omega}$ to be

$$KA(\sigma) := -\log M(\sigma).$$

A sufficient condition for complexity

Theorem (Hölzl, Merkle, Porter)

If $X \in 2^{\omega}$ is Martin-Löf random with respect to a computable, continuous measure μ , then X is complex.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A sufficient condition for complexity

Theorem (Hölzl, Merkle, Porter)

If $X \in 2^{\omega}$ is Martin-Löf random with respect to a computable, continuous measure μ , then X is complex.

This follows from the following two results.

- Let µ be a computable, continuous measure and let X ∈ MLRµ. Then X computes some Y ∈ MLR by an effective procedure that is total on all oracles.
- ▶ If Y is complex and X computes Y by an effective procedure that is total on all oracles, then X is complex.

The converse of the previous theorem doesn't hold, as there are complex sequences that are not proper.

However, we do have a partial converse.

Theorem (Hölzl, Merkle, Porter)

Let $X \in 2^{\omega}$ be proper. If X is complex, then $X \in MLR_{\mu}$ for some computable, continuous measure μ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A useful lemma

Lemma

Suppose that

- µ is a computable measure,
- $X \in MLR_{\mu}$ is non-computable,
- \mathcal{P} is a Π_1^0 class with no computable members, and
- ► $X \in \mathcal{P}$.

Then there is some computable, continuous measure ν such that $X \in MLR_{\nu}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(日) (문) (문) (문) (문)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

< □ > < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

(日) (部) (注) (注) (注)

(日) (部) (注) (注) (注)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

(日) (部) (注) (注) (注)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

(日) (部) (注) (注) (注)

- 12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

æ

æ

2

・ロト ・四ト ・ヨト ・ヨト

2

・ロト ・四ト ・ヨト ・ヨト

Establishing the partial converse

Theorem

Let $X \in 2^{\omega}$ be proper. If X is complex, then $X \in MLR_{\mu}$ for some computable, continuous measure μ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Establishing the partial converse

Theorem

Let $X \in 2^{\omega}$ be proper. If X is complex, then $X \in MLR_{\mu}$ for some computable, continuous measure μ .

To prove this theorem, let h be the computable order function that witnesses that X is complex.

Then we apply the previous lemma to the Π_1^0 class

$$\{A \in 2^{\omega} : K(A \restriction n) \ge h(n)\},\$$

which contains X but no computable sequences.

Connection to semigenericity

Definition

 $X \in 2^{\omega}$ is *semigeneric* if X is non-computable and for every Π_1^0 class \mathcal{P} with $X \in \mathcal{P}$, \mathcal{P} contains some computable member.

Theorem (Hölzl, Merkle, Porter)

Let $X \in 2^{\omega}$ be proper. The following are equivalent:

- 1. $X \in MLR_{\mu}$ for some computable, continuous μ .
- 2. X is complex.
- 3. X is not semigeneric.

Let μ be a computable, continuous measure.

Since every sequence that is random with respect μ is complex, is there a single computable order function that witnesses the complexity of μ -random sequences?

Is there a least such function (up to an additive constant)?

A follow-up result

Definition

Let μ be a continuous measure. Then the granularity function of μ , denoted g_{μ} , is the order function mapping n to the least ℓ such that $\mu(\sigma) < 2^{-n}$ for every σ of length ℓ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A follow-up result

Definition

Let μ be a continuous measure. Then the granularity function of μ , denoted g_{μ} , is the order function mapping n to the least ℓ such that $\mu(\sigma) < 2^{-n}$ for every σ of length ℓ .

Theorem (Hölzl, Merkle, Porter)

Let μ be a computable, continuous measure and let $X \in MLR_{\mu}$. Then we have

$$orall n \ {\it KA}(X{
blach}n)\geq g_{\mu}^{-1}(n)-O(1).$$

Some facts about the granularity of a computable measure

If µ is exactly computable, that is, µ is Q₂-valued and the function σ → µ(σ) is a computable function, then g_µ is computable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some facts about the granularity of a computable measure

- If µ is exactly computable, that is, µ is Q₂-valued and the function σ → µ(σ) is a computable function, then g_µ is computable.
- However, there is a computable, continuous measure μ such that the granularity function g_μ of μ is not computable.

Some facts about the granularity of a computable measure

- If µ is exactly computable, that is, µ is Q₂-valued and the function σ → µ(σ) is a computable function, then g_µ is computable.
- However, there is a computable, continuous measure μ such that the granularity function g_μ of μ is not computable.
- For every computable, continuous measure μ, there is a computable order function f : ω → ω such that

$$|f(n) - g_{\mu}(n)^{-1}| \le O(1).$$

Such a function f provides as a global computable lower bound for the initial segment complexity of every μ -random sequence.

A question about uniformity

Question

If we have a computable, atomic measure $\boldsymbol{\mu}$ such that

$$\forall X \in 2^{\omega} \ (X \in \mathsf{MLR}_{\mu} \setminus \mathsf{Atoms}_{\mu} \ \Rightarrow \ X \text{ is complex}),$$

is there a computable, continuous measure ν such that

 $\mathsf{MLR}_{\mu} \setminus \mathsf{Atoms}_{\mu} \subseteq \mathsf{MLR}_{\nu}$?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An answer

Theorem (Hölzl, Merkle, Porter)

There is a computable, atomic measure μ such that

- every $X \in MLR_{\mu} \setminus Atoms_{\mu}$ is complex but
- there is no computable, continuous measure ν such that MLR_μ \ Atoms_μ ⊆ MLR_ν.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

the $i^{\rm th}$ neighborhood

the $i^{\rm th}$ neighborhood

Suppose that ϕ_i is an order.

◆□> <圖> <필> < => < =>

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

<ロ> (四) (四) (三) (三) (三)

æ

for almost every n.

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

<ロ> (四) (四) (三) (三) (三)

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

 $\phi_i(1) \downarrow = n_1$

<ロ> (四) (四) (三) (三) (三)

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

 $\phi_i(1){\downarrow}=n_1$

<ロ> (四) (四) (三) (三) (三)

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

 $\phi_i(2) \downarrow = n_2$

<ロ> (四) (四) (三) (三) (三)

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

 $\phi_i(2){\downarrow} = n_2$ $\phi_i(1){\downarrow} = n_1$

<ロ> (四) (四) (三) (三) (三)

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

 $\phi_i(2){\downarrow} = n_2$ $\phi_i(1){\downarrow} = n_1$

<ロ> (四) (四) (三) (三) (三)

Suppose that ϕ_i is an order.

We define the measure μ so that for any complex $\mu\text{-random}$ X in this neighborhood, we have

 $KA(X{\upharpoonright}n) < \phi_i^{-1}(n)$

for almost every n.

 $\phi_i(3) \downarrow = n_3$ $\phi_i(2) \downarrow = n_2$ $\phi_i(1) \downarrow = n_1$

<ロ> (四) (四) (三) (三) (三)

<ロ> (四) (四) (四) (日) (日)

the $i^{\rm th}$ neighborhood

What happens if ϕ_i is partial?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

the $i^{\rm th}$ neighborhood

What happens if ϕ_i is partial?

Suppose, for instance, that $\phi_i(3)\uparrow$.

◆□> <圖> <필> < => < =>

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

500

æ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

æ

æ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let $[\sigma_i]$ be the *i*th neighborhood.

One can verify that

• if ϕ_i is partial, then $\llbracket \sigma_i \rrbracket \cap \mathsf{MLR}_{\mu} \subseteq \mathsf{Atoms}_{\mu}$;

Lastly, if there is some computable, continuous ν such that $MLR_{\mu} \setminus Atoms_{\mu} \subseteq MLR_{\nu}$, then there is a computable order $f = \phi_i$ such that for every $X \in MLR_{\mu} \setminus Atoms_{\mu}$,

$$KA(X \upharpoonright n) \ge f^{-1}(n) - O(1)$$

for every n, which yields a contradiction.

Thank you!

◆□ → < @ → < Ξ → < Ξ → ○ < ⊙ < ⊙</p>