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Introduction

The concept of randomness plays an important role in
mathematical practice, particularly in areas such as

I probability theory,

I mathematical statistics,

I real analysis,

I dynamical systems,

I combinatorics, and

I number theory.

Although the forms that randomness takes can vary across
mathematical disciplines, one standard definition of randomness is
to take an object to be random if it is obtained as the result of
randomly choosing an element from some fixed collection of
objects.



An alternative approach

Recently, an alternative approach to defining random mathematical
objects has garnered a considerable amount of attention from
researchers in computability theory.

I refer to this general approach as the logical approach to
randomness; in the context of computability theory is instantiated
as the theory of algorithmic randomness.

Previous philosophical treatments of the theory of algorithmic
randomness have not explicitly presented it as an instance of a
more general logical approach to defining randomness, nor have
they attended to certain problems that arise when one defines
randomness in such a general manner.
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Why such a general treatment?

Such a general treatment

1. unifies previous philosophical discussions of the significance of
algorithmic randomness;

2. allows us to identify and diagnose the source of certain
conceptual challenges that face a large family of formal
definitions of randomness; and

3. takes into account recent work on algorithmic randomness in
various spaces with respect to various probability measures.
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1. Logical definitions of randomness



The main ingredients of a logical definition

Each logical definition of randomness is formulated in terms of
three ingredients:

I a collection X of objects (usually a metric space with the
Borel σ-algebra);

I a probability measure µ on X ; and

I a collection of properties {Φi (x)}i∈ω, expressible in some
formal language L, and satisfiable by objects in X , such that
for each i ∈ ω,

µ({x ∈X : Φi (x)}) = 1.

Hereafter, I will refer to the properties {Φi}i∈ω as randomness
properties.



Putting the ingredients together

From a triple (X , µ, {Φi}i∈ω) satisfying the conditions from the
previous slide, we get a definition D of µ-randomness for objects in
X by stipulating that

x ∈X is D-random if and only if Φi (x) for every i ∈ ω.

One immediate consequence of this definitional framework is that,
assuming that there is some x ∈X and some i ∈ ω such that x
does not satisfy Φi , we can partition X into

I a non-empty collection of D-random objects, and

I a non-empty collection of non-D-random objects.



Examples of logical definitions of randomness (1)

Let (X , µ) be a probability space that satisfies certain effectivity
conditions, where µ be a probability measure whose values on basic
open subsets of X can be effectively approximated. For example:

I [0, 1] with the Lebesgue measure;

I 2ω with a Bernoulli measure with parameter p ∈ Q;

I C[0, 1] with the Wiener measure.

On such spaces, there are a number of non-equivalent definitions
of algorithmic randomness.



Examples of logical definitions of randomness (2)

I Martin-Löf randomness:

I A µ-Martin-Löf test (Ui )i∈ω is a sequence of uniformly
effectively open subsets of X such that µ(Ui ) ≤ 2−i for every
i .

I Randomness properties = X \
⋂

i∈ω Ui for each Martin-Löf
test (Ui )i∈ω.

I Schnorr randomness:
I A µ-Schnorr test (Ui )i∈ω is a Martin-Löf test that satisfies
µ(Ui ) = 2−i for every i .

I Randomness properties = X \
⋂

i∈ω Ui for each Schnorr test
(Ui )i∈ω.

I Weak n-randomness:

I Randomness properties = X \ S for each Π0
n S ⊆ X satisfying

µ(S) = 0.

In general, these definitions are not equivalent.
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I A µ-Martin-Löf test (Ui )i∈ω is a sequence of uniformly
effectively open subsets of X such that µ(Ui ) ≤ 2−i for every
i .

I Randomness properties = X \
⋂

i∈ω Ui for each Martin-Löf
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I Martin-Löf randomness:
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µ(Ui ) = 2−i for every i .

I Randomness properties = X \
⋂

i∈ω Ui for each Schnorr test
(Ui )i∈ω.

I Weak n-randomness:

I Randomness properties = X \ S for each Π0
n S ⊆ X satisfying

µ(S) = 0.

In general, these definitions are not equivalent.



Valuative randomness

The logical approach to randomness differs radically from one
frequently occurring notion of randomness in classical
mathematics, which I refer to as valuative randomness.

Roughly speaking, the idea behind valuative randomness is this: to
be random is to be the value of a random variable.

Recall that a random variable is a measurable function from a
sample space Ω to some space, usually R.

The usage of ‘random’ is not exact here; randomness is usually
attributed to the function itself, but sometimes it is also attributed
to individual outputs of the function.



φ-valued random variables

However, it is important to emphasize that in practice, the range of
a random variable can be any collection of mathematical objects:

I complex numbers

I vectors

I matrices

I functions

I graphs

I closed sets

I measures

I and so on...

Let φ be a mathematical object such as one from any of the
collections listed above.

Then a random φ is simply a φ-valued random variable.



Where exactly is the randomness?

It is common to think of a random variable as yielding the values
of some random or chancy experiment (such as some measurement
of some randomly selected individual).

Thus, a φ-valued random variable can be understood as yielding as
output a randomly chosen φ from the relevant collection of objects.

Note that this random experiment/choice isn’t technically part of
the definition of a random variable, but in applications, such
experiments or choices are often associated to random variables.



Almost sure events

Random variables can take values that we would not expect to
arise as the result of some random experiment.

For instance, a real-valued random variable can take the value
0.1111111 . . . , or a graph-valued random variable can produce a
complete graph as output.

However, there is a sense in which such outcomes are atypical.

In particular, one can associate a probability distribution to a
random variable, and by means of such a probability distribution,
one can define events that happen almost surely (i.e. with
probability one).

Thus, if some property Θ occurs almost surely with respect to the
probability distribution associated to a φ-valued random variable,
we say,“a random φ has Θ almost surely.”



Comparing the logical and valuative approaches

The key distinction between the logical and valuative approaches is
the former is discriminative while the latter is not.

That is, on the logical approach, one discriminates between the
random and the non-random objects.

By contrast, on the valuative approach, any object in the relevant
domain of objects can be the value of a random variable (and thus
can be counted as random).

Moreover, on the valuative approach, one does not typically
attribute non-randomness to any objects.



Process randomness vs. product randomness

It is worth noting that a similar distinction appears in the
philosophical literature on algorithmic randomness, namely the
distinction between process randomness and product randomness.

I An object is process random if it is produced by a random
process.

I An object is product random if it bears those properties that
are typically held by the products of a random process.

For reasons we can discuss later, this distinction is less helpful than
the distinction between the logical approach and the valuative
approach to randomness for the purposes of discussing the uses of
randomness in mathematical practice.



2. Two stability problems for the logical approach



The flavor of the stability problems

The logical approach to defining randomness faces two serious
problems, which I refer to as

I the randomness property problem; and

I the underlying measure problem.

The general thrust of these problems is that each logical definition
of randomness depends on the choice of specific parameters,
which, if not chosen on some principled basis, threaten to trivialize
the logical approach to randomness.

Given that logical definitions of randomness appear to be
vulnerable to slight perturbations of these parameters, I refer to
these problems as stability problems.



Motivating the randomness property problem

For each object x ∈X , if we let the formula φx(y) be

y 6= x ,

then assuming that µ({x}) = 0, we will have

µ
(
{y ∈X : φx(y)}

)
= 1.

Moreover, if µ is continuous (i.e., µ
(
{y}
)

= 0 for every y ∈X ),
then each of the formulas in {φx}x∈X defines a set of µ-measure
one.
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The randomness property problem (1)

The example on the previous slide shows that one cannot require
random objects to satisfy every measure one property, for
otherwise the resulting definition of randomness would have an
empty extension.

But note that for any given object x ∈X , we can always include
the property φx among the collection {Φi}i∈ω of randomness
properties.

That is, for any x ∈X there is always some choice of randomness
properties that excludes x as non-random.

In light of this problem, for nearly 45 years, one central question in
the development of algorithmic randomness was: Which properties
should we count as the randomness properties?



The randomness property problem (2)

The answer to this question about a choice of randomness
properties depends on the role we want a logical definition of
randomness to play.

We can thus cast the randomness property problem relative to
some aims or purposes:

RPP: For a given set of purposes, is there a principled choice of
measure one properties as the randomness properties that yields a
notion of randomness that successfully fulfills these purposes?



The RPP in context (1)

The prototype for the logical definitions that are studied today was
first given by von Mises in 1919.

On von Mises’ approach, a sequence is random if

(i) the limiting relative frequency of each element in the sequence
exists, and

(ii) this limiting relative frequency is invariant under selecting
subsequences from the original sequence.

Note that we cannot require invariance under the selection of all
possible subsequences, as the only sequences that would be
counted as random are those that are nearly constant.

However, von Mises did not initially specify which selection rules
were to be used in his definition.

Aware of this problem, von Mises’ contemporaries objected that his
definition was defective.
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The RPP in context (2)

Subsequently, Wald proved that any countable collection of
selection rules yields a definition of randomness satisfied by
continuum many sequences.

Doob proved that invariance under a single selection rule is a
measure one property (with respect to the relevant measure).

Which countable collection of selection rules should be used to
define randomness?

I Wald: Those rules definable in some “logic.”

I Church: Those rules that are effectively computable.

I Kruse: Studied selection rules definable in various set theories.

I Agafonov: Rules given by a finite-state automaton yield the
normal sequences as random.
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The RPP in context (3)

Ville proved that no matter which countable collection of selection
rules is chosen, there is some measure one property that fails to be
satisfied by the resulting notion of randomness.

In response to this problem, Ville developed his own notion of
randomness in terms of certain betting strategies he called
martingales.

Ville proved that the collection of sequences on which a martingale
fails to win unbounded capital has measure one (again, with
respect to the relevant measure).

Which martingales should be used to define randomness?



The RPP in context (4)

Martin-Löf: Martin-Löf tests capture all randomness properties
that one will encounter in “present or future use in statistics.”

Schnorr argued that Martin-Löf tests yield too many randomness
properties and thus fail to capture “the true concept of
randomness.”

In Schnorr’s view, only measure one properties defined by
Martin-Löf tests that are “visualizable” should be counted as
randomness properties.

Such properties correspond precisely to the collection of Schnorr
tests.



Summing up

Despite these latter developments, over the 40+ years since the
contributions of Martin-Löf and Schnorr, there has yet to be a
clear articulation of what these definitions are intended to capture.

That being the case, no one has offered a systematic account as to
why any of the currently available definitions of algorithmic
randomness adequately address the randomness property problem.



Motivating the underlying measure problem

For a given probability space X , a formula φ that defines a set of
measure one with respect to one measure µ may define a set of
measure zero with respect to another measure ν (so that the
formula ¬φ defines a set of ν-measure one).

Consequently, the extension of any logical definition of randomness
with underlying measure µ that counts the property φ as a
randomness property will be disjoint from the extension of any
logical definition with underlying measure ν that counts the
property ¬φ as a randomness property.
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To complicate matters...

For any object x ∈X , there is a measure µx on X such that
µx({x}) = 1 (i.e., the Dirac measure concentrated on x).

Then the only µ-random element of X is x .

Thus, if we are too general in our approach to defining
randomness, we run the risk of counting every object as random
with respect to some definition.



Randomness with respect to non-computable measures

One need not appeal to Dirac measures to formulate the
underlying measure problem.

If we consider, say, Martin-Löf randomness with respect to
non-computable measures on 2ω, one can prove the following:

Theorem (Reimann-Slaman)

For every sequence X ∈ 2ω, X is non-computable if and only if
there is some measure µ such that

(i) µ({X}) = 0 and

(ii) X is Martin-Löf random with respect to µ.

Surprisingly, this fact can be witnessed by a single measure!



The underlying measure problem

UMP: How can we countenance notions of randomness with
respect to different probability measures without potentially
counting every object as random?

More concisely, which measures yield “legitimate” notions of
randomness?



3. Towards a solution of the stability problems



One possible strategy

One strategy for responding to these problems is to identify a
definition of randomness, given by one collection of randomness
properties and one underlying measure, and successfully argue that
this is the correct definition.

Just as the notion of Turing computable function captures the
intuitive conception of effectively calculable function, we could
hope to isolate a single definition of randomness that captures the
intuitive conception of randomness.



A worry about this strategy

Although some have held that there is such a single correct
definition of randomness, this view has always been articulated for
definitions of random sequence with respect to the Lebesgue
measure.

For instance, both Martin-Löf randomness and Schnorr randomness
have been held to capture the intuitive conception of randomness.

But what about definitions of randomness for other objects, and
with respect to different measures?

Should we hope for one general definition of randomness that is
correct for each choice of objects and each choice of underlying
measure?



A two-pronged solution

1. Seek to ground the various choices of randomness properties
in classical results involving valuative randomness.

2. Concede that logical definitions of randomness give rise to
artifacts, i.e. unintended consequences that result when we
apply the tools of logic to the task of defining randomness.

I Classify the various kinds of artifacts that arise.
I Diagnose the sources of these artifacts.
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Almost sure behavior

As we saw in our discussion of valuative randomness, in classical
mathematics one commonly finds theorems of the form

I “the random φ has property Θ almost surely.”

Recently, there has been a number of theorems in algorithmic
randomness of the form:

I “the algorithmically random φ has Θ”

More significantly, we have a number of stronger results of the
form:

φ has Θ if and only if φ is algorithmically random.
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A theorem involving almost sure behavior

Consider the following example:

Theorem: For every real-valued function f : [0, 1]→ R of bounded
variation, f is differentiable almost everywhere.

A few observations:

I The function quantifier in this theorem ranges over sets of size
2c, the size of the power set of the continuum.

I The properties “being a point of differentiability of some
real-valued function of bounded variation” and “being a point
of non-differentiability of some real-valued function of
bounded variation” are satisfied by every point in [0,1].



A restricted version of the theorem

Now consider:

For every computable non-decreasing real-valued function
f : [0, 1]→ R, f is differentiable almost everywhere.

A few observations:

I The function quantifier in this theorem now ranges over
countably many functions.

I Thus the property “being a point of differentiability of every
computable real-valued function of bounded variation” is the
intersection of countably many sets of Lebesgue measure one,
which is itself a set of Lebesgue measure one.



The connection to randomness

Theorem (Brattka, Miller, Nies)

z ∈ [0, 1] is Martin-Löf random if and only if every computable,
real-valued function f : [0, 1]→ R of bounded variation is
differentiable at z .

That is, Martin-Löf randomness is necessary and sufficient for this
particular instance of almost sure behavior.



Almost sure behavior in classical analysis

Such results hold for a number of definitions of algorithmic
randomness:

Every computable real-valued
x ∈ MLR ⇔ function of bounded variation

is differentiable at x .

For every L1-computable real-valued
x ∈ SR ⇔ function f , the Lebesgue differentiation

theorem holds for f at x .

Every computable real-valued
x ∈W2R ⇔ a.e.-differentiable function is

differentiable at x .

There are a number of other examples, some involving definitions
of randomness that we have not considered here.



Almost sure behavior in ergodic theory

Birkhoff’s ergodic theorem
x ∈ MLRµ ⇔ holds at x for all computable

ergodic transformations with respect
to every lower semi-computable function.

Birkhoff’s ergodic theorem
x ∈ SRµ ⇔ holds at x for all computable

ergodic transformations with respect
to every computable function.

A weak version of Birkhoff’s ergodic
x ∈W2Rµ ⇒ theorem holds at x for all computable

measure-preserving transformations with
respect to every lower semi-computable function.



More examples

There are other promising developments along similar lines:

I Martin-Löf random closed sets;

I Martin-Löf random Brownian motion;

I effective notions of Hausdorff and packing dimension.



What do these examples tell us?

Defintions such as MLR, SR, and W2R correspond to effective
versions of almost sure behavior that are of independent interest to
mathematics.

For the purposes of classifying the effective content of almost sure
behavior in classical mathematics, these definitions thus prove to
be extremely useful.

The different choices of randomness properties that yield these
definitions are thus vindicated by these examples.



Artifacts of logical definitions

Although the previous results indicate that certain choices of
randomness properties and underlying measures yield interesting
and informative definitions of randomness, we still have to account
for the pathological behavior that logical definitions can yield.

The challenge is determine which features of our logical definitions
are artifacts and which are not.



The Reimann-Slaman example

The measures in Reimann-Slaman theorem are admittedly exotic
(for instance, it is necessary that they give some points positive
measure, i.e. they are necessarily discontinuous).

A case can be made that the Reimann-Slaman theorem and related
results are artifacts of the computational framework used to define
randomness (particularly when we consider non-computable
measures).

But on what grounds can we rule out these definitions as
illegitimate?



Restricting to computable measures?

The measures considered in mathematical practice are typically
computable measures (the Lebesgue measure, Bernoulli measures
with rational parameter p, etc.).

In fact, it is quite difficult to produce an example of a
non-computable measure, especially without appealing to the
standard tricks from computability theory.



The stability of randomness w.r.t. computable measures

Further, from the point of view of algorithmic randomness, there is
a high degree of stability among the sequences random with
respect to some computable measure:

Theorem (Levin-Kautz)

For every non-computable sequence X , if X is Martin-Löf random
with respect to some computable measure µ, then X is Turing
equivalent to a sequence Y that is Martin-Löf random with respect
to the Lebesgue measure.

Does this stability justify a restriction to computable measures?



In conclusion

By grounding the choice of randomness properties and underlying
measures in results concerning almost sure behavior in classical
mathematics, we vindicate these choices.

However, much work remains to be done in accounting for which
aspects of our logical definitions legitimately reflect features of
mathematical randomness, and which are merely artifacts.


