
Deep Π0
1 Classes

Christopher P. Porter
University of Florida

Joint work with Laurent Bienvenu

Connecticut Logic Seminar
September 17, 2015

This research is generously sponsored by the John Templeton
Foundation as part of the project, “Structure and Randomness in
the Theory of Computation.”

The opinions expressed in this talk are those of the speaker and do
not necessarily reflect the views of the John Templeton Foundation.

Introduction

The goal of this talk is to discuss two sorts of Π0
1 classes, each of

which gives us insight into certain limitations of probabilistic
computation:

1. negligible Π0
1 classes;

2. deep Π0
1 classes.

A brief history

Gödel’s first incompleteness theorem tells us that there is no
effective procedure for producing a consistent completion of Peano
arithmetic (hereafter, PA).

In the early 1970’s, Jockusch and Soare strengthened this result by
proving (essentially) that the probability of producing a consistent
completion of PA via a probabilistic procedure is zero.

In modern terminology, the set of consistent completions of PA is
negligible.

A brief history, continued

In the early 2000s, Levin strengthened the Jockusch/Soare result
by proving that the probability of producing some initial segment
of a consistent completion of PA goes to zero quickly.

This property is what we have isolated as the notion of depth.

Outline of today’s talk

1. Background

2. Negligible Π0
1 classes

3. Deep Π0
1 classes

1. Background

Notation

2<ω is the collection of finite binary strings.

2ω is the collection of infinite binary sequences.

The standard topology on 2ω is given by the basic open sets

JσK = {X ∈ 2ω : σ ≺ X},

where σ ∈ 2<ω and σ ≺ X means that σ is an initial segment of X .

The Lebesgue measure on 2ω, denoted λ, is defined by

λ(JσK) = 2−|σ|

for each σ ∈ 2<ω (where |σ| is the length of σ), and then we
extend λ to all Borel sets in the usual way.

Martin-Löf Randomness

Definition
A Martin-Löf test is a uniformly Σ0

1 sequence (Ui)i∈ω such that for
each i ,

λ(Ui) ≤ 2−i .

A sequence X ∈ 2ω passes the Martin-Löf test (Ui)i∈ω if
X /∈ ⋂i Ui .

X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

U1 U2 U3

X

�2U1

2�|�|  1

2

U1 U2 U3

X

�2U1

2�|�|  1

2

X

�2U2

2�|�|  1

4

U1 U2 U3

X

�2U1

2�|�|  1

2

X

�2U2

2�|�|  1

4

X

�2U3

2�|�|  1

8

. . .

0

00 01

000 001 010 011

...
...

...
...

...
...

1

10 11

100 101 110 111

0

00

000

...
...

...

...
...

...

U1

000

0

00

...
...

...

...
...

...

U1

U2
000

000

0

00

...
...

...
...

...
...

U1

U3

U2
000

Computable measures

We can also define Martin-Löf randomness with respect to any
computable measure on 2ω.

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 = {m2n : n,m ∈ ω} such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on we will write µ(σ) instead of µ(JσK).

Randomness with respect to a computable measure

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a sequence (Ui)i∈ω of uniformly
effectively open subsets of 2ω such that for each i ,

µ(Ui) ≤ 2−i .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.

Two approaches to probabilistic computation

The standard definition of a probabilistic Turing machine is a
non-deterministic Turing machine such that its transitions are
chosen according to some probability distribution.

In the case of that this distribution is uniform, one can imagine
that the machine is equipped with a fair coin that determines how
it will transition from state to state.

Alternatively, one can define a probabilistic machine to be an
oracle Turing machine with some algorithmically random sequence
as an oracle.

Key idea: For the purposes of computing a sequence or some
sequence in a fixed collection with positive probability, these two
approaches are equivalent.

Turing functionals

Definition
A Turing functional Φ : 2ω → 2ω is given by a computably
enumerable set SΦ of pairs of strings (σ, τ) such that if
(σ, τ), (σ′, τ ′) ∈ SΦ and σ � σ′, then τ � τ ′ or τ ′ � τ .

�!
�

�!
�

�!
�

�!
�

�!
�

�!
�

�!
�

�!
�

..

.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

..

.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

..

.

�!
�

..

.
..
.

..

.
..
.

..

.

X

�!
�

..

.
..
.

..

.
..
.

..

.

X

�(X)# : “� halts on X”

�!
�

..

.
..
.

..

.
..
.

..

.

X

�(X)# : “� halts on X”

Y

�!
�

..

.
..
.

..

.
..
.

..

.

X

�(X)# : “� halts on X”

�(Y)" : “� diverges on Y ”

Y

Turing reducibility

If Φ is a Turing functional and Φ(B)↓ = A, then we say that A is
Turing reducible to B, denoted A ≤T B.

“B computes A”: A ≤T B

One limitation: computing individual sequences

A sequence A ∈ 2ω is computable with positive probability if

λ({X ∈ 2ω : A ≤T X}) > 0.

Theorem (Sacks)

A sequence is computable with positive probability if and only if it
is computable.

Computing members of Π0
1 classes

We cannot probabilistically compute any individual sequence that
is not already computable.

However, the situation is more interesting when we consider the
probabilistic computation of members of various Π0

1 classes.

Π0
1 classes

I P ⊆ 2ω is a Π0
1 class if its complement is effectively open, i.e.,

the complement is given by a computable enumeration of
basic open sets.

I Equivalently, P ⊆ 2ω is a Π0
1 if it is the collection of infinite

paths through through a computable tree (a subset of 2<ω

that is closed downwards under �).

I We can also define a Π0
1 class to be the collection of infinite

paths through a tree whose complement is computably
enumerable.

Computationally powerful random sequences

It is worth noting that some Martin-Löf random sequences can
compute a member of every Π0

1 class.

I X ∈ 2ω has PA degree if X computes a consistent completion
of Peano arithmetic.

I Every sequence of PA degree computes a member of every Π0
1

class.

I Some Martin-Löf random sequences have PA degree.

Dichotomy: A Martin-Löf random sequence has PA degree if and
only if it computes the halting set K = {e : φe(e)↓}.

However, by Sack’s theorem, only measure zero many Martin-Löf
random sequences have this property.

3. Negligible Π0
1 classes

When probabilistic computation fails

A ⊆ 2ω is negligible if we cannot compute some member of A
with positive probability.

That is,
λ
(
{X ∈ 2ω : (∃Y ∈ A)[Y ≤T X]}

)
= 0.

We can also provide a useful equivalent formulation of negligibility
in terms of left-c.e. semi-measures.

Left-c.e. semi-measures

A semi-measure ρ : 2<ω → [0, 1] satisfies

I ρ(Λ) = 1 and

I ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

A semi-measure ρ is left-c.e. if each value ρ(σ) is the limit of a
non-decreasing computable sequence of rationals, uniformly in σ.

Semi-measures and Turing functionals

For σ ∈ 2<ω, we define Φ−1(σ) := {X ∈ 2ω : ∃n (X �n, σ) ∈ SΦ}.

Proposition (Levin)

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ, there is a Turing functional
Φ such that ρ = λΦ.

A universal semi-measure

Levin proved the existence of a universal left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e.
semi-measure ρ, there is some c ∈ ω such that

ρ(σ) ≤ c ·M(σ)

for every σ ∈ 2<ω.

Defining negligibility in terms of semi-measures

Let M be a universal left-c.e. semi-measure.

Let M be the largest measure such that M ≤ M, which can be
seen as a universal measure.

Proposition

S ⊆ 2ω is negligible if and only if M(S) = 0.

Members of negligible classes

A few observations:

I If a Π0
1 class contains a computable member, it cannot be

negligible.

I Moreover, if a Π0
1 class contains a Martin-Löf random

member, it cannot be negligible, since any Π0
1 class with a

random member must have positive Lebesgue measure.

These two facts are subsumed by the following result:

Proposition (Bienvenu, Porter)

Let P be a negligible Π0
1 class. Then for every computable measure

µ, P contains no X ∈ MLRµ.

Does the converse hold?

Suppose that P is a Π0
1 class such that P ∩MLRµ = ∅ for every

computable measure µ.

Does it follow that P is negligible? No.

Theorem (Bienvenu, Porter)

There is a non-negligible Π0
1 class P such that P ∩MLRµ = ∅ for

every computable measure µ.

Computing members of negligible Π0
1 classes

As mentioned above, some Martin-Löf random sequences can
compute a member of every Π0

1 class (but only measure zero many
random sequences have this property).

If we consider a slightly stronger notion of randomness known as
weak 2-randomness, we get a stronger result.

Weak 2-randomness is the notion of randomness that results from
replacing Martin-Löf tests with generalized Martin-Löf tests: a
collection (Ui)i∈ω of uniformly effectively open subsets of 2ω such
that λ(Ui)→ 0.

Theorem (Bienvenu, Porter)

If X ∈ 2ω is weakly 2-random, then X cannot compute any
member of a negligible Π0

1 class.

3. Deep Π0
1 classes

Deep classes: the idea

Unlike negligibility, we only define depth for Π0
1 classes.

Depth is a property that is strictly stronger than negligibility for Π0
1

classes.

Instead of considering how difficult it is to produce a path through
a Π0

1 class P, we can consider how difficult it is to produce an
initial segment of some path through P, level by level.

Deep Π0
1 classes are the “most difficult” Π0

1 classes in this respect.

Some notation

Let P ⊆ 2ω be a Π0
1 class.

Let TP ⊆ 2<ω be the set of extendible nodes of P,

TP = {σ ∈ 2<ω : JσK ∩ P 6= ∅}.

Thus TP is the canonical co-c.e. tree such that P = [TP] (the set
of infinite paths through TP).

Hereafter T will stand for TP .

For each n ∈ ω, Tn consists of all strings in T of length n.

Deep classes: the definition

Let P be a Π0
1 class and let T be the canonical co-c.e. tree such

that P = [T].

P is a deep class if there is some computable order function
h : ω → ω (that is, a computable non-decreasing, unbounded
function) such that

M(Tn) ≤ 2−h(n),

where M(Tn) =
∑

σ∈Tn
M(σ).

That is, the probability of producing some initial segment of a path
through P is effectively bounded from above.

Note: Every deep class is negligible.

Length Probability

Length Probability

1

Length Probability

1  2�h(1)

1
2

Length Probability

 2�h(1)

1
2

Length Probability

 2�h(1)

 2�h(2)

1

Length Probability

2
3

 2�h(1)

 2�h(2)

1

Length Probability

2
3

 2�h(1)

 2�h(2)

 2�h(3)

1

Length Probability

2
3
4

 2�h(1)

 2�h(2)

 2�h(3)

1

Length Probability

2
3
4

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

1

Length Probability

2
3
4
5

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

1

Length Probability

2
3
4
5

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

1

Length Probability

2
3
4
5
6

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

1

Length Probability

2
3
4
5
6

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

1

Length Probability

2
3
4
5
6
7

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

1

Length Probability

2
3
4
5
6
7

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

1

Length Probability

2
3
4
5
6
7
8

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

1

Length Probability

2
3
4
5
6
7
8

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

 2�h(8)

Why use the co-c.e. tree in the definition of depth?

For every Π0
1 class P there is a computable tree S ⊆ 2<ω such that

P = [S].

Why can’t we use this computable tree S in the definition of
depth?

First, in general, S will contain non-extendible nodes, so even if we
can compute some element in Sn, we still may fail to compute an
initial segment of a member of P.

But this observation doesn’t rule out the possibility that we can
define depth in terms of computable trees.

A better reason

Theorem (Bienvenu, Porter)

Let S be a computable tree. Then there is no computable order h
such that M(Sn) ≤ 2−h(n) for every n ∈ ω.

Corollary (Bienvenu, Porter)

Let S be a tree with a computable sub-tree. Then there is no
computable order function h such that M(Sn) ≤ 2−h(n) for every
n ∈ ω.

S

S

Case 1: S has only	

finitely many 	

non-extendible nodes.

S

Case 1: S has only	

finitely many 	

non-extendible nodes.

In this case, the	

left-most path	

of S is computable.

S

Case 2: S has	

infinitely many 	

non-extendible nodes.

S

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

5

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

5

6
Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

5

6
Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

2�f(4)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

2�f(4)

2�f(5)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

2�f(4)

2�f(5)

2�f(6)Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

Does such an f exist?

Yes!

Let U be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ) = σ}.

If (σi)i∈ω is an enumeration of 2<ω in length-lexicographical order,
then

f (i) = K (σi)

is the desired function f .

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

Is every negligible class deep? No.

Theorem (Bienvenu, Porter)

For every deep class P, there is negligible class Q that is not deep
such that

I for every X ∈ P, we have X ∈ Q, and

I for every Y ∈ Q, Y = σ_X for some σ ∈ 2<ω and X ∈ P.

In other words, every deep class is Muchnik equivalent to a
negligible Π0

1 class that is not deep.

However, it is worth noting that depth is preserved under
Medvedev equivalence.

S

S
computable	

tree

S T
computable	

tree

S T
computable	

tree
co-c.e.	

tree

S T
computable	

tree
co-c.e.	

tree

[S] = [T]

S T

S T

S

S T

S

T

S T

S

T

T

S T

S

T

T
T

Computing members of deep Π0
1 classes

What level of randomness R guarantees that no R-random
sequence can compute a member of a deep Π0

1 class?

The answer is known as difference randomness, which is
formulated in terms of difference tests: a collection of pairs of
uniformly effectively open subsets (Ui ,Vi)i∈ω of 2ω such that
λ(Ui \ Vi) ≤ 2−i .

Theorem (Bienvenu, Porter)

If X ∈ 2ω is difference random, then X cannot compute any
member of a deep Π0

1 class.

Note: The difference random sequences are precisely the
Martin-Löf random sequences that cannot compute a completion
of PA.

Paradigm example of a deep class: Consistent completions
of PA

The following is implicit in work of Levin and Stephan.

Theorem
The Π0

1 class of consistent completions of PA is a deep class.

What exactly does this tell us?

Not only can we not probabilistically compute some consistent
completion of PA with positive probability, but we cannot even
hope to produce longer and longer initial segments of a consistent
completion of PA with sufficiently high probability.

Shift-complex sequences: the idea

A Martin-Löf random sequence X has high initial segment
complexity, satisfying

K (X �n) ≥ n − O(1).

Nonetheless, X will still contain arbitrarily long runs of 0s (since all
Martin-Löf random sequences are normal).

That is, certain subwords of X can have fairly low initial segment
complexity.

By contrast, a shift-complex sequence is a sequence with the
property that every subword has high initial segment complexity.

Shift-complex sequences: the formal definition

For δ ∈ (0, 1) and c ∈ ω, we say that X ∈ 2ω is (δ, c)-shift
complex if

K (τ) ≥ δ|τ | − c

for every subword τ of X .

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter)

For every δ ∈ (0, 1) and c ∈ ω, the (δ, c)-shift complex sequences
form a deep class.

Diagonally non-computable sequences and randomness

Recall that a sequence X is diagonally non-computable if there is
some total function f ≤T X such that f (e) 6= φe(e) for every e.

Every Martin-Löf random sequence X is diagonally
non-computable:

Let f (e) = X �e (coded as a natural number).

Note that f (e) < 2e+1.

DNCh functions

Let h be a computable, non-decreasing, unbounded function.

f is a DNCh function if

I f is total,

I f (e) 6= φe(e) for every e, and

I f (e) < h(e) for every e.

Theorem (Bienvenu, Porter)

DNCh is a deep class if and only if
∑∞

n=0
1

h(n) =∞.

Moreover, if
∑∞

n=0
1

h(n) <∞, then every Martin-Löf random
computes a DNCh function.

Thank you for your attention!

Completions of PA proof sketch, 1

To prove that this result, we can consider the class P of total
extensions of a universal partial computable {0, 1}-valued function.

Let u(〈e, x〉) = φe(x), where (φe)e∈ω is an effective enumeration
of all partial computable {0, 1}-valued functions.

We will define a partial computable {0, 1}-valued function φe
(where we know e in advance by the recursion theorem), and this
will allow us to show that P is deep.

Completions of PA proof sketch, 2

Since we are defining φe , we have control of the values u(〈e, x〉)
for every x ∈ ω.

Let (Ik)k∈ω be an effective collection of intervals forming a
partition of ω, where we have control of 2k+1 values of u inside of
Ik for each k ∈ ω.

|I0|

|I0|

|I1|

|I0|

|I1|

|I2|

E1,s

us = 01 ⇤ 0 ⇤ 11

E1,s

us = 01 ⇤ 0 ⇤ 11

E1,s

us = 01 ⇤ 0 ⇤ 11

E1,s

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We want to kill off and .⌧1 ⌧2

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set
We want to kill off and .⌧1 ⌧2

us+1 = 0110 ⇤ 11.

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set
We want to kill off and .⌧1 ⌧2

us+1 = 0110 ⇤ 11.

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set
We want to kill off and .⌧1 ⌧2

us+1 = 0110 ⇤ 11.

⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set
We want to kill off and .⌧1 ⌧2

us+1 = 0110 ⇤ 11.

⌧3 ⌧4
E1,s+1

⌧3 ⌧4
E1,t

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set ut+1 = 0110011.

⌧3 ⌧4
E1,t

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set ut+1 = 0110011.

⌧3 ⌧4

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set ut+1 = 0110011.

E1,t

⌧3

ut = 0110 ⇤ 11

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set ut+1 = 0110011.

E1,t+1

Completions of PA proof sketch, 3

Step 1: For each k , we consider the sets

Ek,s = {σ ∈ 2<ω : σ�Ik extends us�Ik},

and wait for a stage s such that

M(Ek,s) ≥ 2−k .

Completions of PA proof sketch, 4

Step 2: Pick some y ∈ Ik on which we have yet to define u.

Consider the sets

E 0
k,s(y) = {σ ∈ Ek,s : σ(y) = 0}

and
E 1
k,s(y) = {σ ∈ Ek,s : σ(y) = 1}.

Then M(E i
k,s(y)) ≥ 2−(k+1) for i = 0 or 1 (or both).

If this holds for i = 0, we set u(y) = 1; otherwise we set u(y) = 0.

Completions of PA proof sketch, 5

We repeat the process, going back to Step 1.

We can repeat the process at most 2k+1 times (since we have
enough values to work with in Ik).

Eventually, we will get stuck at Step 1.

Setting f (k) = max(Ik), we will have

M({σ : σ�f (k) extends u}) ≤ 2−k .

That is,
M(Tf (k)) ≤ 2−k .

Establishing the depth of a given Π0
1 class

The technique for showing that the class of consistent completions
of PA is deep is what we refer to as a wait and kill argument.

We need to work with some object that we have control over in
some way.

For example, in the previous proof we define a partial computable
{0, 1}-valued function φ using the recursion theorem.

We wait to see a sufficiently large collection of oracles compute
some possible extension of φ (at some place at which φ is currently
undefined).

We then define φ at this place in such a way as to kill off each of
these oracles.

