
Negligibility, depth, and algorithmic randomness
Part 2

Christopher P. Porter
University of Florida

Joint work with Laurent Bienvenu

UF Logic Seminar
September 12, 2014

Last time

I I motivated the study of certain limitations of probabilistic
computation using tools from algorithmic randomness and
computability theory.

I I introduced the basics of algorithmic randomness and
discussed my preferred model of probabilistic computation.

I I introduced the notion of a negligible Π0
1 class and discussed

some basic results about such classes.

Today, I will

1. introduce the notion of a deep Π0
1 class;

2. prove a number of basic results about deep classes;

3. outline the proof that the collection of consistent completions
of Peano arithmetic is a deep class, and

4. provide several other examples of deep classes.

Outline of today’s talk

1. Review

2. Introducing deep Π0
1 classes

3. Examples of Π0
1 classes

1. Review

Recall...

I Martin-Löf random sequences: Infinite binary sequences that
avoid a family of effective null subsets of 2ω.

I Probabilistic computation: Turing computation with an
algorithmically random oracle (usually a Martin-Löf random
sequence).

I Π0
1 classes: Effectively closed classes, or equivalently:
I the collection of infinite paths through a computable tree; or
I the collection of infinite paths through a co-c.e. tree.

Further recall...

I S ⊆ 2ω is negligible if there is no probabilistic procedure for
computing a member of S with positive probability.

I A left-c.e. semi-measure can be seen as a super-additive
measure that can be computably approximated from below.

I There is a correspondence between left-c.e. semi-measures and
Turing functionals.

I There is a universal left-c.e. semi-measure M.

I S ⊆ 2ω is negligible if and only if M(S) = 0, where M is the
largest measure such that M ≤ M.

2. Introducing Deep Π0
1 classes

Deep classes: the idea

Unlike negligibility, we only define depth for Π0
1 classes.

Depth is a property that is strictly stronger than negligibility for Π0
1

classes.

Instead of considering how difficult it is to produce a path through
a Π0

1 class P, we can consider how difficult it is to produce an
initial segment of some path through P, level by level.

Deep Π0
1 classes are the “most difficult” Π0

1 classes in this respect.

Some notation

Let P ⊆ 2ω be a Π0
1 class.

Let TP ⊆ 2<ω be the set of extendible nodes of P,

TP = {σ ∈ 2<ω : JσK ∩ P 6= ∅}.

Thus TP is the canonical co-c.e. tree such that P = [TP] (the set
of infinite paths through TP).

Hereafter T will stand for TP .

For each n ∈ ω, Tn consists of all strings in T of length n.

Deep classes: the definition

Let P be a Π0
1 class and let T be the canonical co-c.e. tree such

that P = [T].

P is a deep class if there is some computable, non-decreasing,
unbounded function h : ω → ω such that

M(Tn) ≤ 2−h(n),

where M(Tn) =
∑

σ∈Tn
M(σ).

That is, the probability of producing some initial segment of a path
through P is effectively bounded from above.

Note: Every deep class is negligible.

Length Probability

Length Probability

1

Length Probability

1  2�h(1)

1
2

Length Probability

 2�h(1)

1
2

Length Probability

 2�h(1)

 2�h(2)

1

Length Probability

2
3

 2�h(1)

 2�h(2)

1

Length Probability

2
3

 2�h(1)

 2�h(2)

 2�h(3)

1

Length Probability

2
3
4

 2�h(1)

 2�h(2)

 2�h(3)

1

Length Probability

2
3
4

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

1

Length Probability

2
3
4
5

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

1

Length Probability

2
3
4
5

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

1

Length Probability

2
3
4
5
6

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

1

Length Probability

2
3
4
5
6

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

1

Length Probability

2
3
4
5
6
7

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

1

Length Probability

2
3
4
5
6
7

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

1

Length Probability

2
3
4
5
6
7
8

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

1

Length Probability

2
3
4
5
6
7
8

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

 2�h(8)

Why use the co-c.e. tree in the definition of depth?

For every Π0
1 class P there is a computable tree S ⊆ 2<ω such that

P = [S].

Why can’t we use this computable tree S in the definition of
depth?

First, in general, S will contain non-extendible nodes, so even if we
can compute some element in Sn, we still may fail to compute an
initial segment of a member of P.

But this observation doesn’t rule out the possibility that we can
define depth in terms of computable trees.

A better reason

Theorem (Bienvenu, Porter)

Let S be a computable tree. Then there is no computable order h
such that M(Sn) ≤ 2−h(n) for every n ∈ ω.

Corollary (Bienvenu, Porter)

Let S be a tree with a computable sub-tree. Then there is no
computable order h such that M(Sn) ≤ 2−h(n) for every n ∈ ω.

S

S

Case 1: S has only	

finitely many 	

non-extendible nodes.

S

Case 1: S has only	

finitely many 	

non-extendible nodes.

In this case, the	

left-most path	

of S is computable.

S

Case 2: S has	

infinitely many 	

non-extendible nodes.

S

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

5

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

5

6
Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

S

1

2

3

4

5

6
Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

2�f(4)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

2�f(4)

2�f(5)

Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

S

1

2

3

4

5

6

2�f(1)

2�f(2)

2�f(3)

2�f(4)

2�f(5)

2�f(6)Case 2: S has	

infinitely many 	

non-extendible nodes.
In this case, first we 	

find a sequence of 	

non-extendible nodes	

of increasing length.

f : N ! N

X

n2N
2�f(n)  1.

Next let be	

a function that is computably	

approximable from above	

with no computable lower	

bound such that

Does such an f exist?

Yes!

Let U be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ) = σ}.

If (σi)i∈ω is an enumeration of 2<ω in length-lexicographical order,
then

f (i) = K (σi)

is the desired function f .

Does such an f exist?

Yes!

Let U be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ) = σ}.

If (σi)i∈ω is an enumeration of 2<ω in length-lexicographical order,
then

f (i) = K (σi)

is the desired function f .

Does such an f exist?

Yes!

Let U be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ) = σ}.

If (σi)i∈ω is an enumeration of 2<ω in length-lexicographical order,
then

f (i) = K (σi)

is the desired function f .

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

Is every negligible class deep?

No.

Theorem (Bienvenu, Porter)

For every deep class P, there is negligible class Q that is not deep
such that

I for every X ∈ P, we have X ∈ Q, and

I for every Y ∈ Q, Y = σ_X for some σ ∈ 2<ω and X ∈ P.

In other words, every deep class is Muchnik equivalent to a
negligible Π0

1 class that is not deep.

However, it is worth noting that depth is preserved under
Medvedev equivalence.

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

Is every negligible class deep? No.

Theorem (Bienvenu, Porter)

For every deep class P, there is negligible class Q that is not deep
such that

I for every X ∈ P, we have X ∈ Q, and

I for every Y ∈ Q, Y = σ_X for some σ ∈ 2<ω and X ∈ P.

In other words, every deep class is Muchnik equivalent to a
negligible Π0

1 class that is not deep.

However, it is worth noting that depth is preserved under
Medvedev equivalence.

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

Is every negligible class deep? No.

Theorem (Bienvenu, Porter)

For every deep class P, there is negligible class Q that is not deep
such that

I for every X ∈ P, we have X ∈ Q, and

I for every Y ∈ Q, Y = σ_X for some σ ∈ 2<ω and X ∈ P.

In other words, every deep class is Muchnik equivalent to a
negligible Π0

1 class that is not deep.

However, it is worth noting that depth is preserved under
Medvedev equivalence.

S

S
computable	

tree

S T
computable	

tree

S T
computable	

tree
co-c.e.	

tree

S T
computable	

tree
co-c.e.	

tree

[S] = [T]

S T

S T

S

S T

S

T

S T

S

T

T

S T

S

T

T
T

Computing members of deep Π0
1 classes

What level of randomness R guarantees that no R-random
sequence can compute a member of a deep Π0

1 class?

The answer is known as difference randomness, which is
formulated in terms of difference tests: a collection of pairs of
uniformly effectively open subsets (Ui ,Vi)i∈ω of 2ω such that
λ(Ui \ Vi) ≤ 2−i .

Theorem (Bienvenu, Porter)

If X ∈ 2ω is difference random, then X cannot compute any
member of a deep Π0

1 class.

Note: The difference random sequences are precisely the
Martin-Löf random sequences that cannot compute a completion
of PA.

3. Examples of deep Π0
1 classes

Paradigm example: Consistent completions of PA

The following is implicit in work of Levin and Stephan.

Theorem
The Π0

1 class of consistent completions of PA is a deep class.

What exactly does this tell us?

Not only can we not probabilistically compute some consistent
completion of PA with positive probability, but we cannot even
hope to produce longer and longer initial segments of a consistent
completion of PA with sufficiently high probability.

Completions of PA proof sketch, 1

To prove that this result, we can consider the class P of total
extensions of a universal partial computable {0, 1}-valued function.

Let u(〈e, x〉) = φe(x), where (φe)e∈ω is an effective enumeration
of all partial computable {0, 1}-valued functions.

We will define a partial computable {0, 1}-valued function φe
(where we know e in advance by the recursion theorem), and this
will allow us to show that P is deep.

Completions of PA proof sketch, 2

Since we are defining φe , we have control of the values u(〈e, x〉)
for every x ∈ ω.

Let (Ik)k∈ω be an effective collection of intervals forming a
partition of ω, where we have control of 2k+1 values of u inside of
Ik for each k ∈ ω.

|I0|

|I0|

|I1|

|I0|

|I1|

|I2|

us = 01 ⇤ 0 ⇤ 11

us = 01 ⇤ 0 ⇤ 11

us = 01 ⇤ 0 ⇤ 11

us = 01 ⇤ 0 ⇤ 11
⌧1 ⌧2 ⌧3 ⌧4

us = 01 ⇤ 0 ⇤ 11
⌧1 ⌧2 ⌧3 ⌧4 E1,s

us = 01 ⇤ 0 ⇤ 11
⌧1 ⌧2 ⌧3 ⌧4 E1,s

Ms(E1,s) � 1/2

us = 01 ⇤ 0 ⇤ 11
⌧1 ⌧2 ⌧3 ⌧4 E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

us = 01 ⇤ 0 ⇤ 11
⌧1 ⌧2 ⌧3 ⌧4 E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

us = 01 ⇤ 0 ⇤ 11
⌧1 ⌧2 ⌧3 ⌧4 E1,s

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We want to kill off and .⌧1 ⌧2

⌧1 ⌧2 ⌧3 ⌧4 E1,sus = 01 ⇤ 0 ⇤ 11

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set . us+1 = 0110 ⇤ 11
We want to kill off and .⌧1 ⌧2

⌧1 ⌧2 ⌧3 ⌧4 E1,sus = 01 ⇤ 0 ⇤ 11

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set . us+1 = 0110 ⇤ 11
We want to kill off and .⌧1 ⌧2

⌧1 ⌧2 ⌧3 ⌧4 E1,sus = 01 ⇤ 0 ⇤ 11

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set . us+1 = 0110 ⇤ 11
We want to kill off and .⌧1 ⌧2

⌧3 ⌧4 E1,s+1us = 01 ⇤ 0 ⇤ 11

Ms(E1,s) � 1/2

Ms(⌧1) + Ms(⌧2) = 3/8

Ms(⌧3) + Ms(⌧4) = 1/4

We set . us+1 = 0110 ⇤ 11
We want to kill off and .⌧1 ⌧2

⌧3 ⌧4ut = 0110 ⇤ 11 E1,t

⌧3 ⌧4

Mt(E1,t) � 1/2

ut = 0110 ⇤ 11 E1,t

⌧3 ⌧4

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

ut = 0110 ⇤ 11 E1,t

⌧3 ⌧4

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

ut = 0110 ⇤ 11 E1,t

Mt(⌧4) = 5/16

⌧3 ⌧4

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

ut = 0110 ⇤ 11 E1,t

Mt(⌧4) = 5/16

We want to kill off .⌧4

⌧3 ⌧4

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

ut = 0110 ⇤ 11 E1,t

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set . ut+1 = 0110011

⌧3 ⌧4

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

ut = 0110 ⇤ 11 E1,t

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set . ut+1 = 0110011

⌧3 ⌧4

E1,t+1
Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set .

ut = 0110 ⇤ 11

ut+1 = 0110011

E1,t

⌧3

Mt(E1,t) � 1/2

Mt(⌧3) = 3/16

Mt(⌧4) = 5/16

We want to kill off .⌧4
We set .

ut = 0110 ⇤ 11

ut+1 = 0110011

E1,t+1

Completions of PA proof sketch, 3

Step 1: For each k , we consider the sets

Ek,s = {σ ∈ 2<ω : σ�Ik extends us�Ik},

and wait for a stage s such that

M(Ek,s) ≥ 2−k .

Completions of PA proof sketch, 4

Step 2: Pick some y ∈ Ik on which we have yet to define u.

Consider the sets

E 0
k,s(y) = {σ ∈ Ek,s : σ(y) = 0}

and
E 1
k,s(y) = {σ ∈ Ek,s : σ(y) = 1}.

Then M(E i
k,s(y)) ≥ 2−(k+1) for i = 0 or 1 (or both).

If this holds for i = 0, we set u(y) = 1; otherwise we set u(y) = 0.

Completions of PA proof sketch, 5

We repeat the process, going back to Step 1.

We can repeat the process at most 2k+1 times (since we have
enough values to work with in Ik).

Eventually, we will get stuck at Step 1.

Setting f (k) = max(Ik), we will have

M({σ : σ�f (k) extends u}) ≤ 2−k .

That is,
M(Tf (k)) ≤ 2−k .

Establishing the depth of a given Π0
1 class

The technique for showing that the class of consistent completions
of PA is deep is what we refer to as a wait and kill argument.

We need to work with some object that we have control over in
some way.

For example, in the previous proof we define a partial computable
{0, 1}-valued function φ using the recursion theorem.

We wait to see a sufficiently large collection of oracles compute
some possible extension of φ (at some place at which φ is currently
undefined).

We then define φ at this place in such a way as to kill off each of
these oracles.

Shift-complex sequences: the idea

A Martin-Löf random sequence X has high initial segment
complexity, satisfying

K (X �n) ≥ n − O(1).

Nonetheless, X will still contain arbitrarily long runs of 0s (since all
Martin-Löf random sequences are normal).

That is, certain subwords of X can have fairly low initial segment
complexity.

By contrast, a shift-complex sequence is a sequence with the
property that every subword has high initial segment complexity.

Shift-complex sequences: the formal definition

For δ ∈ (0, 1) and c ∈ ω, we say that X ∈ 2ω is (δ, c)-shift
complex if

K (τ) ≥ δ|τ | − c

for every subword τ of X .

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter)

For every δ ∈ (0, 1) and c ∈ ω, the (δ, c)-shift complex sequences
form a deep class.

Diagonally non-computable sequences and randomness

Recall that a sequence X is diagonally non-computable if there is
some total function f ≤T X such that f (e) 6= φe(e) for every e.

Every Martin-Löf random sequence X is diagonally
non-computable:

Let f (e) = X �e (coded as a natural number).

Note that f (e) < 2e+1.

DNCh functions

Let h be a computable, non-decreasing, unbounded function.

f is a DNCh function if

I f is total,

I f (e) 6= φe(e) for every e, and

I f (e) < h(e) for every e.

Theorem (Bienvenu, Porter)

DNCh is a deep class if and only if
∑∞

n=0
1

h(n) =∞.

Moreover, if
∑∞

n=0
1

h(n) <∞, then every Martin-Löf random
computes a DNCh function.

Thank you for your attention!

