Negligibility, depth, and algorithmic randomness Part 2

Christopher P. Porter University of Florida

Joint work with Laurent Bienvenu

UF Logic Seminar September 12, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Last time

- I motivated the study of certain limitations of probabilistic computation using tools from algorithmic randomness and computability theory.
- I introduced the basics of algorithmic randomness and discussed my preferred model of probabilistic computation.
- ► I introduced the notion of a negligible Π⁰₁ class and discussed some basic results about such classes.

Today, I will

- 1. introduce the notion of a deep Π_1^0 class;
- 2. prove a number of basic results about deep classes;
- outline the proof that the collection of consistent completions of Peano arithmetic is a deep class, and
- 4. provide several other examples of deep classes.

Outline of today's talk

- 1. Review
- 2. Introducing deep Π_1^0 classes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3. Examples of Π_1^0 classes

1. Review

<□ > < @ > < E > < E > E のQ @

Recall...

- ► Martin-Löf random sequences: Infinite binary sequences that avoid a family of effective null subsets of 2^ω.
- Probabilistic computation: Turing computation with an algorithmically random oracle (usually a Martin-Löf random sequence).
- Π_1^0 classes: Effectively closed classes, or equivalently:
 - the collection of infinite paths through a computable tree; or

the collection of infinite paths through a co-c.e. tree.

Further recall...

- S ⊆ 2^ω is negligible if there is no probabilistic procedure for computing a member of S with positive probability.
- A left-c.e. semi-measure can be seen as a super-additive measure that can be computably approximated from below.
 - There is a correspondence between left-c.e. semi-measures and Turing functionals.

- ► There is a universal left-c.e. semi-measure *M*.
- ▶ $S \subseteq 2^{\omega}$ is negligible if and only if $\overline{M}(S) = 0$, where \overline{M} is the largest measure such that $\overline{M} \leq M$.

2. Introducing Deep Π_1^0 classes

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Unlike negligibility, we only define depth for Π_1^0 classes.

Depth is a property that is strictly stronger than negligibility for Π_1^0 classes.

Instead of considering how difficult it is to produce a path through a Π_1^0 class \mathcal{P} , we can consider how difficult it is to produce an *initial segment* of some path through \mathcal{P} , level by level.

Deep Π_1^0 classes are the "most difficult" Π_1^0 classes in this respect.

Some notation

Let $\mathcal{P} \subseteq 2^{\omega}$ be a Π_1^0 class.

Let $T_{\mathcal{P}} \subseteq 2^{<\omega}$ be the set of extendible nodes of \mathcal{P} ,

$$T_{\mathcal{P}} = \{ \sigma \in 2^{<\omega} : \llbracket \sigma \rrbracket \cap \mathcal{P} \neq \emptyset \}.$$

Thus $T_{\mathcal{P}}$ is the canonical co-c.e. tree such that $\mathcal{P} = [T_{\mathcal{P}}]$ (the set of infinite paths through $T_{\mathcal{P}}$).

Hereafter T will stand for $T_{\mathcal{P}}$.

For each $n \in \omega$, T_n consists of all strings in T of length n.

Deep classes: the definition

Let \mathcal{P} be a Π_1^0 class and let T be the canonical co-c.e. tree such that $\mathcal{P} = [T]$.

 $\mathcal P$ is a *deep class* if there is some computable, non-decreasing, unbounded function $h:\omega\to\omega$ such that

 $M(T_n) \leq 2^{-h(n)},$

where $M(T_n) = \sum_{\sigma \in T_n} M(\sigma)$.

That is, the probability of producing some initial segment of a path through \mathcal{P} is effectively bounded from above.

Note: Every deep class is negligible.

▲□> <個> <=> <=> <=> <=> <=> <=> <<=>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

(日) (四) (코) (코) (코) (코)

Why use the co-c.e. tree in the definition of depth?

For every Π_1^0 class \mathcal{P} there is a computable tree $S \subseteq 2^{<\omega}$ such that $\mathcal{P} = [S]$.

Why can't we use this computable tree S in the definition of depth?

First, in general, S will contain non-extendible nodes, so even if we can compute some element in S_n , we still may fail to compute an initial segment of a member of \mathcal{P} .

But this observation doesn't rule out the possibility that we can define depth in terms of computable trees.

Theorem (Bienvenu, Porter)

Let S be a computable tree. Then there is no computable order h such that $M(S_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Corollary (Bienvenu, Porter)

Let S be a tree with a computable sub-tree. Then there is no computable order h such that $M(S_n) \leq 2^{-h(n)}$ for every $n \in \omega$.

Case 1: S has only finitely many non-extendible nodes.

Case 1: S has only finitely many non-extendible nodes.

In this case, the left-most path of S is computable.

Case 2: S has infinitely many non-extendible nodes.

Case 2: S has infinitely many non-extendible nodes.

In this case, first we find a sequence of non-extendible nodes of increasing length.

Case 2: S has infinitely many non-extendible nodes.

In this case, first we find a sequence of non-extendible nodes of increasing length.

Case 2: S has infinitely many non-extendible nodes.

In this case, first we find a sequence of non-extendible nodes of increasing length.

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

In this case, first we find a sequence of non-extendible nodes of increasing length.

$$\sum_{n \in \mathbb{N}} 2^{-f(n)} \le 1.$$

Does such an f exist?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Does such an f exist?

Yes!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Does such an f exist?

Yes!

Let U be a universal, prefix-free Turing machine.

For each $\sigma \in 2^{<\omega}$, the *prefix-free Kolmogorov complexity* of σ is defined to be

$$K(\sigma) := \min\{|\tau| : U(\tau) = \sigma\}.$$

If $(\sigma_i)_{i\in\omega}$ is an enumeration of $2^{<\omega}$ in length-lexicographical order, then

$$f(i) = K(\sigma_i)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is the desired function f.

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is every negligible class deep?

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is every negligible class deep? No.

Depth vs. negligibility

It is not hard to show that every deep class is negligible.

Is every negligible class deep? No.

Theorem (Bienvenu, Porter)

For every deep class $\mathcal P,$ there is negligible class $\mathcal Q$ that is not deep such that

- for every $X \in \mathcal{P}$, we have $X \in \mathcal{Q}$, and
- for every $Y \in Q$, $Y = \sigma^{\frown} X$ for some $\sigma \in 2^{<\omega}$ and $X \in \mathcal{P}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In other words, every deep class is Muchnik equivalent to a negligible Π_1^0 class that is not deep.

However, it is worth noting that depth is preserved under Medvedev equivalence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

(日) (四) (三) (三) (三)

æ

(日) (四) (三) (三) (三)

▲□▶ ▲圖▶ ▲필▶ ▲필▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Computing members of deep Π_1^0 classes

What level of randomness \mathcal{R} guarantees that no \mathcal{R} -random sequence can compute a member of a deep Π_1^0 class?

The answer is known as *difference randomness*, which is formulated in terms of *difference tests*: a collection of pairs of uniformly effectively open subsets $(\mathcal{U}_i, \mathcal{V}_i)_{i \in \omega}$ of 2^{ω} such that $\lambda(\mathcal{U}_i \setminus \mathcal{V}_i) \leq 2^{-i}$.

Theorem (Bienvenu, Porter)

If $X \in 2^{\omega}$ is difference random, then X cannot compute any member of a deep Π_1^0 class.

Note: The difference random sequences are precisely the Martin-Löf random sequences that cannot compute a completion of PA.

3. Examples of deep Π_1^0 classes

<□ > < @ > < E > < E > E のQ @

Paradigm example: Consistent completions of PA

The following is implicit in work of Levin and Stephan.

Theorem The Π_1^0 class of consistent completions of PA is a deep class.

What exactly does this tell us?

Not only can we not probabilistically compute some consistent completion of *PA* with positive probability, but we cannot even hope to produce longer and longer initial segments of a consistent completion of *PA* with sufficiently high probability.

Completions of PA proof sketch, 1

To prove that this result, we can consider the class \mathcal{P} of total extensions of a universal partial computable $\{0, 1\}$ -valued function.

Let $u(\langle e, x \rangle) = \phi_e(x)$, where $(\phi_e)_{e \in \omega}$ is an effective enumeration of all partial computable $\{0, 1\}$ -valued functions.

We will define a partial computable $\{0, 1\}$ -valued function ϕ_e (where we know *e* in advance by the recursion theorem), and this will allow us to show that \mathcal{P} is deep.

Completions of PA proof sketch, 2

Since we are defining ϕ_e , we have control of the values $u(\langle e, x \rangle)$ for every $x \in \omega$.

Let $(I_k)_{k\in\omega}$ be an effective collection of intervals forming a partition of ω , where we have control of 2^{k+1} values of u inside of I_k for each $k \in \omega$.

(4日) (個) (目) (目) (目) (0)(○)

$$u_s = 01 * 0 * 11$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\downarrow \downarrow \downarrow \\ u_s = 01 * 0 * 11$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$u_s = 01 * 0 * 11$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$u_s = 01 * 0 * 11$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$u_s = 01 * 0 * 11$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$u_s = 01 * 0 * 11$$

 $M_s(E_{1,s}) \ge 1/2$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$u_s = 01 * 0 * 11$$

 $M_s(E_{1,s}) \ge 1/2$
 $M_s(\tau_1) + M_s(\tau_2) = 3/8$

$$u_s = 01 * 0 * 11$$
$$M_s(E_{1,s}) \ge 1/2$$
$$M_s(\tau_1) + M_s(\tau_2) = 3/8$$
$$M_s(\tau_3) + M_s(\tau_4) = 1/4$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$u_s = 01 * 0 * 11$$

$$M_s(E_{1,s}) \ge 1/2$$

$$M_s(\tau_1) + M_s(\tau_2) = 3/8$$

$$M_s(\tau_3) + M_s(\tau_4) = 1/4$$

We want to kill off τ_1 and τ_2 .

<ロ> (四) (四) (四) (日) (日)

æ

$$u_s = 01 * 0 * 11$$

$$M_s(E_{1,s}) \ge 1/2$$

$$M_s(\tau_1) + M_s(\tau_2) = 3/8$$

$$M_s(\tau_3) + M_s(\tau_4) = 1/4$$

(日) (월) (분) (분)

$$u_s = 01 * 0 * 11$$

$$M_s(E_{1,s}) \ge 1/2$$

$$M_s(\tau_1) + M_s(\tau_2) = 3/8$$

$$M_s(\tau_3) + M_s(\tau_4) = 1/4$$

(日) (월) (분) (분)

$$u_s = 01 * 0 * 11$$

$$M_s(E_{1,s}) \ge 1/2$$

$$M_s(\tau_1) + M_s(\tau_2) = 3/8$$

$$M_s(\tau_3) + M_s(\tau_4) = 1/4$$

<ロ> (四) (四) (四) (日) (日)

$$u_s = 01 * 0 * 11$$
$$M_s(E_{1,s}) \ge 1/2$$
$$M_s(\tau_1) + M_s(\tau_2) = 3/8$$
$$M_s(\tau_3) + M_s(\tau_4) = 1/4$$

(日) (월) (분) (분)

$$u_t = 0110 * 11$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

< □ > < □ > < □ > < □ > < □ > < □ > = □

We want to kill off τ_4 .

$$u_t = 0110 * 11$$

 $M_t(E_{1,t}) \ge 1/2$
 $M_t(\tau_3) = 3/16$
 $M_t(\tau_4) = 5/16$

$$u_t = 0110 * 11$$

 $M_t(E_{1,t}) \ge 1/2$
 $M_t(\tau_3) = 3/16$
 $M_t(\tau_4) = 5/16$

(日) (四) (王) (王) (王)

æ

Completions of PA proof sketch, 3

Step 1: For each k, we consider the sets

$$E_{k,s} = \{ \sigma \in 2^{<\omega} : \sigma \upharpoonright I_k \text{ extends } u_s \upharpoonright I_k \},\$$

and wait for a stage s such that

$$M(E_{k,s})\geq 2^{-k}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Completions of PA proof sketch, 4

Step 2: Pick some $y \in I_k$ on which we have yet to define u.

Consider the sets

$$E^0_{k,s}(y) = \{\sigma \in E_{k,s} : \sigma(y) = 0\}$$

and

$$E^1_{k,s}(y) = \{ \sigma \in E_{k,s} : \sigma(y) = 1 \}.$$

Then $M(E_{k,s}^{i}(y)) \ge 2^{-(k+1)}$ for i = 0 or 1 (or both).

If this holds for i = 0, we set u(y) = 1; otherwise we set u(y) = 0.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Completions of PA proof sketch, 5

We repeat the process, going back to Step 1.

We can repeat the process at most 2^{k+1} times (since we have enough values to work with in I_k).

Eventually, we will get stuck at Step 1.

Setting $f(k) = \max(I_k)$, we will have

 $M(\{\sigma:\sigma| f(k) \text{ extends } u\}) \leq 2^{-k}.$

That is,

$$M(T_{f(k)}) \leq 2^{-k}.$$

Establishing the depth of a given Π_1^0 class

The technique for showing that the class of consistent completions of PA is deep is what we refer to as a *wait and kill* argument.

We need to work with some object that we have control over in some way.

For example, in the previous proof we define a partial computable $\{0,1\}$ -valued function ϕ using the recursion theorem.

We wait to see a sufficiently large collection of oracles compute some possible extension of ϕ (at some place at which ϕ is currently undefined).

We then define ϕ at this place in such a way as to $\it kill$ off each of these oracles.

Shift-complex sequences: the idea

A Martin-Löf random sequence X has high initial segment complexity, satisfying

$$K(X \upharpoonright n) \ge n - O(1).$$

Nonetheless, X will still contain arbitrarily long runs of 0s (since all Martin-Löf random sequences are normal).

That is, certain subwords of X can have fairly low initial segment complexity.

By contrast, a shift-complex sequence is a sequence with the property that every subword has high initial segment complexity.

Shift-complex sequences: the formal definition

For $\delta \in (0,1)$ and $c \in \omega$, we say that $X \in 2^{\omega}$ is (δ, c) -shift complex if

$$\mathsf{K}(\tau) \geq \delta |\tau| - c$$

for every subword τ of X.

The following draws upon work of Rumyantsev.

Theorem (Bienvenu, Porter) For every $\delta \in (0, 1)$ and $c \in \omega$, the (δ, c) -shift complex sequences form a deep class.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Diagonally non-computable sequences and randomness

Recall that a sequence X is diagonally non-computable if there is some total function $f \leq_T X$ such that $f(e) \neq \phi_e(e)$ for every e.

Every Martin-Löf random sequence X is diagonally non-computable:

Let $f(e) = X \upharpoonright e$ (coded as a natural number).

Note that $f(e) < 2^{e+1}$.

DNC_h functions

Let h be a computable, non-decreasing, unbounded function.

- f is a DNC_h function if
 - f is total,
 - $f(e) \neq \phi_e(e)$ for every e, and
 - f(e) < h(e) for every e.

Theorem (Bienvenu, Porter) DNC_h is a deep class if and only if $\sum_{n=0}^{\infty} \frac{1}{h(n)} = \infty$.

Moreover, if $\sum_{n=0}^{\infty} \frac{1}{h(n)} < \infty$, then every Martin-Löf random computes a DNC_h function.

Thank you for your attention!