
Coin Tossing,
Randomness Extraction,

and
Algorithmic Randomness

Christopher P. Porter
UF GMA Colloquium

March 25, 2015

Motivating Question
Suppose you are given a biased
coin, i.e. a coin such that

P(H) = p

and
P(T) = 1� p

for some , and you are asked
to use it to simulate a fair coin.

Can this be done?

The Plan of Attack
1. Some technicalities

2. Von Neumann’s Trick

3. Generalizing the problem

4. Addressing the general
 problem with algorithmic
 randomness

A Bit of Notation
Hereafter, we will represent the
event H by 0 and the event T by 1.

Let denote the set of all finite
binary strings.

Let denote the set of all infinite
binary sequences.

2<!

2!

More Notation
Given , means is
an initial segment of .

Similarly, given and ,
 means that is an initial
segment of .

Given and ,
denotes the initial segment of
of length .

�, ⌧ 2 2<! � � ⌧ �
⌧

�
� 2 2<! X 2 2!

� � X
X

X 2 2! n 2 ! X�n

n

A Few More Definitions
 has a natural topology: the
basic open sets are of the form:

The Lebesgue measure on is
defined on basic open sets to be

Later we will consider other
probability measures on .

2!

2!

2!

J�K := {X 2 2! : � � X}

�

�(J�K) = 2�|�|.

Simulating a fair coin?
What does it mean to simulate a fair
coin with a biased coin?

Roughly, we want to use our biased
coin to generate a finite string (or
even an infinite sequence!) that is
indistinguishable from one produced
by tossing a fair coin.

Simulating a fair coin?
What does it mean to simulate a fair
coin with a biased coin?

Roughly, we want to use our biased
coin to generate a finite string (or
even an infinite sequence!) that is
indistinguishable from one produced
by tossing a fair coin.

This is not very helpful.

More precisely… (1)
Suppose we produce the string
using our biased coin.
We want some function
that will convert into an unbiased
string .

� 2 2<!

� : 2<! ! 2<!

�

⌧ 2 2<!

P
�
�(⇠)_0 | �(⇠)

�
= P

�
�(⇠)_1 | �(⇠)

�
=

1

2

⇠ 2 2<!For any ,

.

More precisely… (2)
We also want to satisfy the
following monotonicity property:

Such a function should also be
effectively computable: there should
be an algorithm for computing the
values of .�

�

� � �0) �(�) � �(�0)

Von Neumann’s Trick

Von Neumann’s Trick
0

Von Neumann’s Trick
01

Von Neumann’s Trick
010

Von Neumann’s Trick
0100

Von Neumann’s Trick
01000

Von Neumann’s Trick
010000

Von Neumann’s Trick
0100000

Von Neumann’s Trick
01000001

Von Neumann’s Trick
010000010

Von Neumann’s Trick
0100000100

Von Neumann’s Trick
01000001001

Von Neumann’s Trick
01000001001

Von Neumann’s Trick
01000001001001010000
01010010000000110100
00000000111000100001
01010001010100100000
00001010011000001010

Von Neumann’s Trick
01000001001001010000
01010010000000110100
00000000111000100001
01010001010100100000
00001010011000001010

Step 1: Split the string into blocks of length 2.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Step 2: Delete all instances of 00 and 11.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 00 00 01 00 10 01 01 00 00
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
01 01 00 01 01 01 00 10 00 00
00 00 10 10 01 10 00 00 10 10

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

0

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 10

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0 1 0

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0 1 10

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0 1 1 10

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0 1 0 01 1

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

0 0 1 0 0 0 0 1 0 01 1
0 0 0 0 0 1 1 1 0 1 1 1

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Von Neumann’s Trick

Step 1: Split the string into blocks of length 2.

Step 2: Delete all instances of 00 and 11.

001000010110000001110111

Step 3: Replace all instances of 01 with 0 and all
instances of 10 with 1.

Formally…
Von Neumann’s trick gives us a
monotonic, computable function
 satisfying: � : 2<! ! 2<!

,
, and

for every of even length.

(1)
(2)

(3)

� 2 2<!

�(�_00) = �(�_11) = �(�)

�(�_01) = �(�)_0

�(�_10) = �(�)_1

Why does this work? (1)
,

 and

� 2 2<!

P(�_0 | �) = p P(�_1 | �) = 1� pRecall:

Key observation:

P(�_00 | �) = p2 P(�_11 | �) = (1� p)2

P(�_01 | �) = P(�_10 | �) = p(1� p)

,

 For every ,

.

 and

� 2 2<!Key observation:

P(�_00 | �) = p2 P(�_11 | �) = (1� p)2

P(�_01 | �) = P(�_10 | �) = p(1� p)

,

 For every ,

.

The conditional probability that the
next bit output by is a 0, given that
it has read either 01 0r 10, is 1/2.

�

Why does this work? (2)

Changing things up (1)
The probability measure on
induced by a coin with bias p is
called a Bernoulli p-measure.

Suppose now we are given a
sequence of biased coins, and we
are asked to simulate a fair coin
by tossing each biased coin
consecutively.

2!

Changing things up (2)
The probability measure on
induced by such a sequence of coins
is called a generalized Bernoulli
measure, denoted , where
 and for every

Then for every of length n,

2!

µ~p

.

� 2 2<!

.

More changes (1)
What if we generalize even further,
so that the sequence of coins we
toss depends not only on the trial
but also on the previous outcomes?

In this most general case, we’re
dealing with arbitrary probability
measure on . 2!

More changes (2)
In these more general settings, von
Neumann’s trick won’t work.

Is there a more general effective
procedure for converting such
biased random sequences into
unbiased random sequences?

More changes (2)
In these more general settings, von
Neumann’s trick won’t work.

Is there a more general effective
procedure for converting such
biased random sequences into
unbiased random sequences?

Yes, if we recast the question in
terms of algorithmic randomness.

Computable measures
In what follows, we will restrict our
attention to computable probability
measures on .

A measure on is computable if
there is a computable function
 such that for every
 and every ,

2!

2!

� 2 2<!

.

Random Sequences
We will also restrict our attention
to sufficiently random sequences.

How do we guarantee that a
sequence is sufficiently random?

There are a number of ways to make
the notion of random sequence
precise.

The Law of Large
Numbers

 satisfies the law of large
numbers if
X 2 2!

where is the number of 0’s in
� 2 2<!.

The Law of Large
Numbers

 satisfies the law of large
numbers if
X 2 2!

where is the number of 0’s in
� 2 2<!.

Not sufficient for randomness:

The Law of Large
Numbers

 satisfies the law of large
numbers if
X 2 2!

where is the number of 0’s in
� 2 2<!.

Not sufficient for randomness:
010101010101010101010101…

Normal Sequences
�, ⌧ 2 2<!For , let denote the

number of occurrences of as a
subword of .

 is normal if for every , X 2 2! � 2 2<!

.

Normal Sequences
�, ⌧ 2 2<!For , let denote the

number of occurrences of as a
subword of .

 is normal if for every , X 2 2! � 2 2<!

.

Not sufficient for randomness:

Normal Sequences
�, ⌧ 2 2<!For , let denote the

number of occurrences of as a
subword of .

 is normal if for every , X 2 2! � 2 2<!

.

Not sufficient for randomness:
0100011011000001010011…

Normal Sequences
�, ⌧ 2 2<!For , let denote the

number of occurrences of as a
subword of .

 is normal if for every , X 2 2! � 2 2<!

.

Not sufficient for randomness:
0 1 00 01 10 11 000 001 010 011…

Stochastic Sequences (1)
Let be a computable
function.

Stochastic Sequences (1)
Let be a computable
function.

Using , we can extract a
subsequence from as follows:X 2 2!

Stochastic Sequences (1)
Let be a computable
function.

Using , we can extract a
subsequence from as follows:X 2 2!

If , we include the first bit of
in our subsequence; if , we exclude
the first bit.

Stochastic Sequences (1)
Let be a computable
function.

Using , we can extract a
subsequence from as follows:X 2 2!

If , we include the first bit of
in our subsequence; if , we exclude
the first bit.

After n steps, if , we include the
(n+1)st bit of in our subsequence;
otherwise, we exclude the (n+1)st bit.

Stochastic Sequences (1) Stochastic Sequences (2)
Let denote the subsequence
extracted from using .

Stochastic Sequences (1) Stochastic Sequences (2)
Let denote the subsequence
extracted from using .

 is stochastic ifX 2 2!

Stochastic Sequences (1) Stochastic Sequences (2)
Let denote the subsequence
extracted from using .

(1) satisfies the law of large
numbers, and

 is stochastic ifX 2 2!

Stochastic Sequences (1) Stochastic Sequences (2)
Let denote the subsequence
extracted from using .

(1) satisfies the law of large
numbers, and

 is stochastic ifX 2 2! is stochastic if
(1) satisfies the law of large

numbers, and
(2) for every computable selection

rule , satisfies
the law of large numbers.

Stochastic Sequences (1) Stochastic Sequences (3)
Not sufficient for randomness:

There is a stochastic sequence
 such that for all n,X 2 2!

.

Martin-Löf Tests

A Martin-Löf test is a sequence
 of open subsets of that
are uniformly enumerated by some
effective procedure and satisfy

2!

for every .

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Martin-Löf
Randomness

 is Martin-Löf random if for
every Martin-Löf test ,
X 2 2!

.

 denotes the collection of
Martin-Löf random sequences.

Martin-Löf
Randomness

 is Martin-Löf random if for
every Martin-Löf test ,
X 2 2!

.

 denotes the collection of
Martin-Löf random sequences.

Sufficient for randomness?

000

00

0 1

01 10 11

001 010 011 100 101 111

000

00

0 1

01 10 11

001 010 011 100 101 111

000

00

0 1

01 10 11

001 010 011 100 101 111

000

00

0 1

01 10 11

001 010 011 100 101 111

MLR for non-uniform
measures

For any computable measure we
can define Martin-Löf randomness
with respect to .

MLR for non-uniform
measures

For any computable measure we
can define Martin-Löf randomness
with respect to .

We simply replace the condition

.
with the condition

MLR for non-uniform
measures

For any computable measure we
can define Martin-Löf randomness
with respect to .

We simply replace the condition

.
with the condition

= -ML-random sequences

Extraction (1)

Monotonic functions
can be extended to maps :

� : 2<! ! 2<!

 is a Turing functional if it is
induced by a computable,
monotonic .

Extraction (2)

Given , is Turing
reducible to if there is a Turing
functional such that .

 and are Turing equivalent if
there are Turing functionals and
such that and .

The main result

Theorem: Let be a computable
measure on . For every
such that is not computable, there
is some such that and
are Turing equivalent.

Levin and Kautz independently
proved:

Some comments (1)
Unlike von Neumann’s trick, the
Levin/Kautz conversion procedure
works for any computable measure
(in fact, it works for any non-
computable measure as well).

Some comments (1)
Unlike von Neumann’s trick, the
Levin/Kautz conversion procedure
works for any computable measure
(in fact, it works for any non-
computable measure as well).

However, the conversion requires
that we also have access to the
underlying biased measure.

Some comments (2)
Joint work with Laurent Bienvenu:

There are biased random sequences
such that there is no computable
bound on the number of biased
input bits needed to guarantee the
output of n unbiased bits for any
effective conversion procedure.

Thank you!

