Coin Tossing,
Randominess Extraction,
and
Algorithmic Randominess
Chris&opher Y. Porter

U MA Caitaqumm
March 28, 2018

Motivating Question

Suppose you are given a biased
con, Le. a coin such thak
P(H) =8
and
P(T)=1-—p

for some p#1/2, and You are asked
to use ik to simulate a fair coin,

Cown this be done?

The Plan of Attack

1. Some techinicalities
2. Vo Neumanin’s Tricke
3. Generalizing the problem

4. Addressing the general
F?robi.em with algorithmic
randominess

A Bit of Notation

Hereafter, we will represent the
event H by © and the event T by 1.

Leb 2< denote the set of all finite
binary strings.

Leb 2¥ denocte the set of all infinite
bimarfj sequences.

More Notatiown

Griven 0,7 €25Y, 0 2T wmeans o is
an initial seqment of 7.

Similarly, given o €27 and X € 27
o< X means that o is an thitial
seqment of X,

Given X €2 andnecw, X|n
denotes the initial seqment of
of length n,

A Few More Definibtions
2% has a natural topology: the
basic open sets are of the form:
[Gll=1X c 2005 < X |
The Lebesque measure \ on 2¢ is
defined on basic open sets to be
A[o]) =271,

Laker we will consider obher
prcbabai&v measures on 2%,

Simulating a fair coin?

What does it meain to simulate a fair
coln with a blased coin?

Roughly, we want to use our biased
coin ko generate a finite skring (or
even an infinite sequence!) that is
indistinquishable from one produced
bv tossing a fair coin.

Simulating a fair coin?

What does it meain to simulate a fair
coln with a blased coin?

Roughly, we want to use our biased
coin ko generate a finite skring (or
even an infinite sequence!) that is
indistinquishable from one produced
bv tossing a fair coin.

This is not very kei.pffui.‘

More precisely... (1)

Suppase we prc}c&u&e the skring o € 2¢
using our biased coin,

We wank some function ¢:2<Y — 2<¢

thalb will convert o inko an unbiased
skring 7 € 2%,

For any ¢ € i

P(6(6)70 | (6)) = P($(6)"1] 6(0)) = 5.

More precisely... (2)

We also want ¢ to so&isﬂf:j the
following monotonicity property:

o 20 = o(a)h= o(al

Such a function should also be
effectively computable: there should
be an algorithm for computing the
values c;:-?qb

Vo Neumanin’s Trick

Vo Neumanin’s Trick

O

¢ LChe
Vo Neumanin’s Tr

ol

Vo Neumanin’s Trick

010

Vo Neumanin’s Trick

0100

Vo Neumanin’s Trick

01000

Vo Neumanin’s Trick

010000

Vo Neumanin’s Trick

0100000

Vo Neumanin’s Trick

01000001

Vo Neumanin’s Trick

010000010

Vo Neumanin’s Trick

0100000100

Vo Neumanin’s Trick

01000001001

Vo Neumanin’s Trick

01000001001

Vo Neumanin’s Trick

01000001001001010000
01010010000000110100
OOOOO000111000100001
01010001010100100000
O0001010011000001010

Vo Neumanin’s Trick

01000001001001010000
01010010000000110100
OOOOO000111000100001
01010001010100100000
O0001010011000001010

Step 1: Split the string into blocks of length 2.

Vo Neumanin’s Trick

01 00 00 O]l 00 10 Ol 01 60 0O
01 O01 00 10 OO0 00 00 11 01 00
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Vo Neumanin’s Trick

01 00 00 O]l 00 10 Ol 01 60 0O
01 O01 00 10 OO0 00 00 11 01 00
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

01 Bg 00 61 00 10 Ol 01 6O 0O
01 O01 00 10 OO0 00 00 11 01 00
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

0]l &g g 01 00 10 0] ©]1 ©0 oo
01 O01 00 10 OO0 00 00 11 01 00
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

0l g g 01 g 10 ©1 01 ©0 0O
01 01 00 10 00 00 00 11 01 00
00 00 00 00 11 10 00 10 00 01
O] ©]1 00 O] ©] 0] 00 10 OO OO
00 00 10 10 01 10 00 00 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

ol »d pg 0l BC 10 01 01 B4 00
0l 01 00 10 00O 0O 00 11 01 00

OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

0l »d pQ 01 BC 10 0] 01 PO K
0l 01 00 10 00O 0O 00 11 01 00

OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

ol g g 01 g 10 0]l 0l g g
01 01 D 10 OO 00 00 11 ©1 00
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

ol g g 01 g 10 0]l 0l g g
01 01 D 10 B 00 00 11 ©1 00
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

ol g g 01 g 10 0]l 0l g g
Ol 01 € 10 G < 00 11 ©1 ©0
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

ol g g 01 g 10 0]l 0l g g
Ol 01 € 10 G < 00 11 ©1 ©0
OO 00 00 00 11 10 00 10 00 01
01 O01 00 O] ©1 01 00 10 6O 00
OO 00 10 10 ©1 10 60 60 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

0l g g 01 g 10 01 0l g g
0l 01 P 10 2 B D 4 01 Q.
2L DO G 10 g 10 g 01
0l 01 g 01 01 01 Y 10 g b
DO DG 10 10 01 102G K 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

o1 ol 106 ©]1 ©1l
o1 o1 10 o1l
10 10 ol
0l o1 01 01 o1 10
l0 10 10 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

0l 01 10 ©1 ©]1 ©]1 ©]1 10 ©]1 10 10 ©]
0l 01 ©]1 ©]1 ©1 10 1© 10 ©]1 10 10 10

Step 1: Split the string into blocks of length 2.

Step 2: TDelete all instances of oo and 11,

Vo Neumanin’s Trick

0l 01 10 ©1 ©]1 ©]1 ©]1 10 ©]1 10 10 ©]
0l 01 ©]1 ©]1 ©1 10 1© 10 ©]1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

O 01 10 ©]1 ©]1 ©1 ©1 10 ©1 1© 10 ©1
0] ©1 ©]1 ©1 ©]1 10 10 1© ©]1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

O O 10 0] 01 ©1 01 10 01 10 10 ©1
0] ©1 ©]1 ©1 ©]1 10 10 1© ©]1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

O O] 01 01 01 01 10 ©1 10 10 O]
0] ©1 ©]1 ©1 ©]1 10 10 1© ©]1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

O] O 01 oliol.106] 1010 O1
0l 01 ©1 ©1 ©1 10 1¢© 10 ©1 1© 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all nstances of 01 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

OO0 1 60 01 o0l 1001 1010 01
0l ©1 ©1 ¢©1 01 10 1© 10 01 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all nstances of 01 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

OO0 00 O ol.loa] 1”06 O]
0l ©1 ©1 ¢©1 01 10 1© 10 01 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all nstances of 01 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

OO0 1" Q0 O 0. 1001 1010 O]
0l ©1 ©1 ¢©1 01 10 1© 10 01 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all nstances of 01 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

OL.0 1" 60 0 O 0. 1"l 1010 0]
0l 01 ©1 ©1 ©1 10 1¢© 10 ©1 1© 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

QL] O OO0 1" 10AC O
ol 01 01 01 01 10 10 10 o1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

O+ 1" Q"0 OO0 ["g M0 O]
©l 01 01 ©1 ©1 10 10 10 ©1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

OG0 0 "0 OO0, 1wy dlar] O]
©l 01 01 ©1 ©1 10 10 10 ©1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

Q001" 00 OQ. wey diel O
©l 01 01 ©1 01 10 10 10 ©1 10 10 10

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

OOl 60 o 1"a 1 1 O
O a0 0 0 1. $Tel il 1]

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

Vo Neumanin’s Trick

001000010110000001110111

Step 1: Split the string into blocks of length 2.
Step 2: TDelete all instances of oo and 11,

Step 3: Replace all instances of o1 with © and all
instances of 10 with 1.

~or mailj. L

Von Neumann’s brick qgives us a
monotonice, ﬂampuﬁabte function
¢ : 2% = 2% satisfying:

(1) ¢(0700) = ¢(0711) = ¢(0),

(2) ¢(0701) =9¢(0)" 0, and

(3) #(c710) =¢(0)"1

{or every o € 2 off even length,

Why does this work? iy

Recall: P(c™0|o)=p, Plc"1|o)=1-1p

J
Key observation: For every o c 2,
Plo 00 o) = p2, Plo. 11000 (1 -~ p)°
and
P(oc 701 [so) =g 10 "g) =pai= p)

Why does this work? (2)

Key observation: For every g € 2°¢,
Ple 00 fo)= p2, Plo L= (=)"
and
P(o 0li|'c) =R(g 10| o) — B8l — p),

The conditional prababdi&v thal Ehe
next bit ouépuﬁ bj ¢ is a O, given that
Lk has read ecither 01 or 10, is 1/2.

Changing things up (1)

The probabitiﬁv measure on 2%
iduced b:j a coitn wikth bilas p is
called a Bernoulll p-measure.

Suppose now we are given a
sequence of biased coins, and we
are asked bto simulate a fair coin
bv tossing each biased coin
consecutively,

Changing things up (2)

The probability measure on 2
induced by such a sequence of coins
s called a generalized Bernoulli
measure, denoted p , where

7= (po,p1,...) ana& p; € [0,1] «for every

i €0,

Then for every o € 2% of length w,

lu'ﬁ(o-/\o ‘ U) o pnd

More changes (1)

What if we qgeneralize even further,
so that the sequence of coins we

toss depends not only on the trial
but also own the previous oubtcomes?

In this most general case, we're
dealing with arb&%rarj erobabdi&j
measure on 2,

More changes (2)

In these more general settings, von
Neumanins brick wont worlk,

Is there a more qeneral effective
rocedure for converting such

Eiased random sequences into

unbiased random sequences?

More changes (2)

In these more general settings, von
Neumanins brick wont worlk,

Is there a more qeneral effective
rocedure for converting such

Eiased random sequences into

unbiased random sequences?

Yes, f we recast the gquestion in
terms of algorithmic randomness.

Camgu@abi& Measures

In what follows, we will restrict our

abbention ko compu&abi& Frcbabitiﬁy
measures on 2%,

A mweasure 1 o 2° s campu&abl& Exf
there is a computable function

fi:2% xw— Q such that for every
o € 2°Y and every i€ w,

u([o]) = fi(o,4)| < 27%

Random Sequev\c:‘es

We will also reskrict our atbtention
to swf&ciemﬂj random sequences.

How do we quarantee that a
sequence is sufficiently random?

There are a humber of ways to make
the notion of random sequence
precise,

The Law of Larqe
Numbers

X € 2 sotisfies the law of larqge
numbers E;ﬂf

i foXin) 1
n— 00 n 2

where #o(0) is the number of 0% in
O 2<w«

The Law of Larqe
Numbers

X € 2 sotisfies the law of larqge
numbers if

i foXin) 1
N—r00 n 2

where #o(0) is the number of 0% in
O 2<w«

Not sufficient for randommness:

The Law of Larqe
Numbers

X € 2 sotisfies the law of larqge
numbers if

i foXin) 1
N—r00 n 2

where #o(0) is the number of 0% in
O 2<w«

Not sufficient for randommness:
010101010101010101010101...

Normal Sequewtes

For 0,7 € 2<¥, lek #,(7) dencte the
number of occurrences of o as a
subword of 7.

X €2¥is normal Exf afc:;-r every o € 2,
SUX
lim #o(XIn)

Nn— 00 n

— 9% |0'|

Normal Sequemtes

For 0,7 € 2<¥, lek #,(7) dencte the
number of occurrences of o as a
subword of 7.

X €2¥is normal Eff mfor every o € 2,
oA
lim #o(XIn)

Nn— 00 n

— OO

Not sufficient for randominess:

Normal Sequ,emtes

For 0,7 € 2<¥, lek #,(7) dencte the
number of occurrences of o as a
subword of 7.

X €2¥is normal E.zf mfor every o € 2,
SUX
lim #o(XIn)

Nn— 00 n

— OO

Not sufficient for randomness:
0l00011011000001010011...

Normal Sequ,emtes

For 0,7 € 2<¥, lek #,(7) dencte the
number of occurrences of o as a
subword of 7.

X €2¥is normal E.zf mfor every o € 2,
SUX
lim #o(XIn)

Nn— 00 n

— OO

Not sufficient for randomness:
1 00 O] 1011 000 ©0] 010 Oll...

Stochastic Sequences (1)

Leby:2<Y — {0,1} be a «compu&abl&
function,

Stochastic Sequences (1)

Lek vy : 2<% = {0,1} be a «compu&abl&
function,

Using ¢, we cain extract a
subsequence from X € 2“ as follows:

Stochastic Sequences (1)

Lek vy : 2<% = {0,1} be a «compu&abl&
function,

Using ¢, we cain extract a
subsequence from X € 2“ as follows:
If p(e) =1, we include the first bit of X

n our subsequence; if () =0, we exclude
the first bit,

Stochastic Sequences (1)

Lek vy : 2<% = {0,1} be a «compu&abl&
function,

Using ¢, we cain extract a
subsequence from X € 2“ as follows:
If Y(e) =1, we include the firsk bik of x
n our subsequence; if () =0, we exclude

the first bit,

After n steps, U Y(Xn) =1, we include the
(nr1)st bik of X in our subsequence;
otherwise, we exclude the (n+1)sk bit.

Stochastic Sequﬁwﬁés (2)

Let X[, x) denote the subsequ@y\@e
extracted from X using ¢ .

Stochastic Sequences ()

Let X[, x) denote the subsequ@\@e
extracted from X using ¢ .

X € 2¥is stochastic if

Stochastic Sequences ()

Let X[, x) denote the subsequ@\@e
extracted from X using ¢ .
X € 2¥is stochastic if

(1) X satisfies the law of larqge
numbers, and

Stochastic Sequences ()

Let X[, x) denote the subsequ@\@e
extracted from X using ¢ .

X € 2¥is stochastic if

(1) X satisfies the law of larqge
numbers, and

(2) for every computable selection
rule ¥ : 259 — {0,1}, X[, x) satisfies
the Llaw of large numbers.

Stochastic Sequences ©)

Not sufficient for randomness:

There is a stochastic sequence
X € 2% such that for all wn,

#o(X [n) 3
n 2%

Martin-LoF Tests

A Martin-Lof test is a sequence
(Uiicw of open subsets of 2 that
are uniformly enumerated by some
effective procedure and satisfy

AT =27
mfc;)r every 1€ W,

O'EUl

Martin-Lof
Randomness

X € 2¥is Martin-Lof random i for
every Martin-Lof test (Uiiew,

X ¢ (U,
1EW
MLR denoctes the collection of
Martin-Lof random sequences.

Martin-Lof
Randomness

X € 2¥is Martin-Lof random if for
every Martin-Lof test (Uiiew,

X ¢ (U,

1Ew
MLR denoctes the collection of
Martin-Lof random sequences.

Sufficient for randomness?

2111

7101

0115

o104

bl :..,

ocool

._106

) L%

10¥%

\ o

oo X,

—
"
'

i
O
i

Y11

—
"
'

i
O
i

Y11

—
"
'

i
O
i

Y11

MLR for non-uniform
mMeasures

For an @ompuhbie MMeasure [we
can de?i;me Martin-Lof randommness
wikh res[pec:& to 1,

MLR for non-uniform
mMeasures

For an aompu&abi& MMeasure [we
can de?i;me Martin-Lof randommness
wikh res[pec:& to 1,

We sLmFLv re[ptmie the condition
AU;) <27°

with the condition
u(U;) <277

MLR for non-uniform
mMeasures

For an aompu&abi& Measure [we
can de?i;me Martin-Lof randommness
with res[pec:& bo L,
We sLmFLv re[ptmie the condition
AU;) <27°
with the condition
u(U;) <277

MLR, = p=ML-random sequences

Exkraction (1)

Monotonic functions ¢: 29 — 2<%
ca be extended to maps & : 2% — 2

®(X) =] ¢(XIn)
necw
® is a Turing functional if it is
induced by a computable,
nmonotoniec ¢

Extraction (2)

Given XY €2¥, X is Turing
reducible to Y if there is a Turing
functional @ such that o(Y) = X,

X and Y are Turing equ&vatemﬁ i
there are Turing functionals & and ¥
such that (V) = Xand ¥(X) =Y,

The wain resulk

Levin and Kaukz imdepemdemﬂv
Frc:;vec:l.:

Theorem: Let u be a aompu&abi.e
measure o 2, For every X € MLR,
such that X is not compu able, there
s some Y € MLR such thak X and vy
are Turing equiv&t@x&

Some comments (1)

Unlike von Neumanin’s brick, the
Levin/Kaubz conversion procedure
works for any computable measure
(in fact, it works for any non-
computable measure as well).

Some comments (1)

Unlike von Neumanin’s brick, the
Levin/Kaubz conversion procedure
works for any computable measure
(in fact, it works for any non-
computable measure as well).

However, the conversion requires
that we also have access to the
underlying biased measure.

Some comments (2)

Joink work with Laurent Bienvenu:

There are biased random sequences
such that there is no computable
bound own the number of biased
nput bits needed to quarantee the
oubput of n unbiased bits for
effective conversion procedure.

Thawnle vou,!

