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Motivating Question
Suppose you are given a biased 
coin, i.e. a coin such that

P(H) = p

and
P(T ) = 1� p

for some        , and you are asked 
to use it to simulate a fair coin.

Can this be done?



The Plan of Attack
1.  Some technicalities

2.  Von Neumann’s Trick

3.  Generalizing the problem

4.  Addressing the general  
    problem with algorithmic  
    randomness



A Bit of Notation
Hereafter, we will represent the  
event H by 0 and the event T by 1. 

Let     denote the set of all finite 
binary strings.

Let    denote the set of all infinite 
binary sequences.
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More Notation
Given          ,       means   is  
an initial segment of  . 

Similarly, given         and       , 
       means that   is an initial 
segment of   .

Given        and      ,     
denotes the initial segment of    
of length  .
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A Few More Definitions
   has a natural topology: the  
basic open sets are of the form:

The Lebesgue measure   on    is  
defined on basic open sets to be 

Later we will consider other 
probability measures on   .
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J�K := {X 2 2! : � � X}

�

�(J�K) = 2�|�|.



Simulating a fair coin?
What does it mean to simulate a fair 
coin with a biased coin?

Roughly, we want to use our biased 
coin to generate a finite string (or 
even an infinite sequence!) that is 
indistinguishable from one produced 
by tossing a fair coin. 



Simulating a fair coin?
What does it mean to simulate a fair 
coin with a biased coin?

Roughly, we want to use our biased 
coin to generate a finite string (or 
even an infinite sequence!) that is 
indistinguishable from one produced 
by tossing a fair coin. 

This is not very helpful.



More precisely… (1)
Suppose we produce the string         
using our biased coin.
We want some function               
that will convert   into an unbiased 
string        .
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More precisely… (2)
We also want   to satisfy the 
following monotonicity property:

Such a function should also be 
effectively computable:  there should 
be an algorithm for computing the 
values of  .�

�
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Von Neumann’s Trick
01000001001001010000 
01010010000000110100 
00000000111000100001 
01010001010100100000 
00001010011000001010



Von Neumann’s Trick
01000001001001010000 
01010010000000110100 
00000000111000100001 
01010001010100100000 
00001010011000001010

Step 1:  Split the string into blocks of length 2.
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Step 1:  Split the string into blocks of length 2.

01 00 00 01 00 10 01 01 00 00 
01 01 00 10 00 00 00 11 01 00 
00 00 00 00 11 10 00 10 00 01 
01 01 00 01 01 01 00 10 00 00 
00 00 10 10 01 10 00 00 10 10
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Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 00 00 01 00 10 01 01 00 00 
01 01 00 10 00 00 00 11 01 00 
00 00 00 00 11 10 00 10 00 01 
01 01 00 01 01 01 00 10 00 00 
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Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01 
01 01 01 01 01 10 10 10 01 10 10 10



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01 
01 01 01 01 01 10 10 10 01 10 10 10

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01 
01 01 01 01 01 10 10 10 01 10 10 10

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.

0



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01 
01 01 01 01 01 10 10 10 01 10 10 10
0 0

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.
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Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.
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Step 1:  Split the string into blocks of length 2.
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Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01 
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0 1 1 10

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

01 01 10 01 01 01 01 10 01 10 10 01 
01 01 01 01 01 10 10 10 01 10 10 10
0 0 1 0 0 0 0 1 0 01 1

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

0 0 1 0 0 0 0 1 0 01 1
0 0 0 0 0 1 1 1 0 1 1 1

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.



Von Neumann’s Trick

Step 1:  Split the string into blocks of length 2.

Step 2:  Delete all instances of 00 and 11.

001000010110000001110111

Step 3:  Replace all instances of 01 with 0 and all 
instances of 10 with 1.



Formally…
Von Neumann’s trick gives us a  
monotonic, computable function 
              satisfying: � : 2<! ! 2<!

,
, and

for every         of even length.

(1)
(2)

(3)
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�(�_00) = �(�_11) = �(�)

�(�_01) = �(�)_0

�(�_10) = �(�)_1



Why does this work? (1)
,

 and

� 2 2<!

P(�_0 | �) = p P(�_1 | �) = 1� pRecall:

Key observation:

P(�_00 | �) = p2 P(�_11 | �) = (1� p)2

P(�_01 | �) = P(�_10 | �) = p(1� p)

,

 For every        ,

.



 and

� 2 2<!Key observation:

P(�_00 | �) = p2 P(�_11 | �) = (1� p)2

P(�_01 | �) = P(�_10 | �) = p(1� p)

,

 For every        ,

.

The conditional probability that the  
next bit output by   is a 0, given that 
it has read either 01 0r 10, is 1/2.

�

Why does this work? (2)



Changing things up (1)
The probability measure on   
induced by a coin with bias p is 
called a Bernoulli p-measure.

Suppose now we are given a  
sequence of biased coins, and we 
are asked to simulate a fair coin 
by tossing each biased coin 
consecutively.

2!



Changing things up (2)
The probability measure on   
induced by such a sequence of coins 
is called a generalized Bernoulli 
measure, denoted     , where  
               and          for every

Then for every         of length n,  

2!

µ~p

. 

� 2 2<!

. 



More changes (1)
What if we generalize even further, 
so that the sequence of coins we 
toss depends not only on the trial 
but also on the previous outcomes?

In this most general case, we’re 
dealing with arbitrary probability 
measure on   . 2!



More changes (2)
In these more general settings, von 
Neumann’s trick won’t work.

Is there a more general effective 
procedure for converting such 
biased random sequences into 
unbiased random sequences?



More changes (2)
In these more general settings, von 
Neumann’s trick won’t work.

Is there a more general effective 
procedure for converting such 
biased random sequences into 
unbiased random sequences?

Yes, if we recast the question in 
terms of algorithmic randomness.



Computable measures
In what follows, we will restrict our 
attention to computable probability 
measures on   .

A measure   on    is computable if 
there is a computable function 
                such that for every      
        and every      ,  

2!

2!

� 2 2<!

. 



Random Sequences
We will also restrict our attention 
to sufficiently random sequences.

How do we guarantee that a 
sequence is sufficiently random?

There are a number of ways to make 
the notion of random sequence 
precise.  



The Law of Large 
Numbers

       satisfies the law of large 
numbers if 
X 2 2!
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Numbers

       satisfies the law of large 
numbers if 
X 2 2!

where       is the number of 0’s in
� 2 2<!. 

Not sufficient for randomness: 
010101010101010101010101…
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Normal Sequences
�, ⌧ 2 2<!For          , let       denote the  

number of occurrences of   as a  
subword of   . 

       is normal if for every        , X 2 2! � 2 2<!

. 

Not sufficient for randomness: 
0100011011000001010011…



Normal Sequences
�, ⌧ 2 2<!For          , let       denote the  

number of occurrences of   as a  
subword of   . 

       is normal if for every        , X 2 2! � 2 2<!

. 

Not sufficient for randomness: 
0 1 00 01 10 11 000 001 010 011…



Stochastic Sequences (1)
Let                be a computable 
function. 
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Stochastic Sequences (1)
Let                be a computable 
function. 

Using   , we can extract a 
subsequence from        as follows:X 2 2!

If         , we include the first bit of     
in our subsequence; if         , we exclude  
the first bit.

After n steps, if            , we include the   
(n+1)st bit of    in our subsequence;  
otherwise, we exclude the (n+1)st bit.



Stochastic Sequences (1) Stochastic Sequences (2)
Let        denote the subsequence  
extracted from    using   .
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Stochastic Sequences (1) Stochastic Sequences (2)
Let        denote the subsequence  
extracted from    using   .

(1)    satisfies the law of large 
numbers, and  

       is stochastic ifX 2 2!       is stochastic if 
(1)   satisfies the law of large 

numbers, and  
(2) for every computable selection 

rule               ,        satisfies 
the law of large numbers. 



Stochastic Sequences (1) Stochastic Sequences (3)
Not sufficient for randomness:

There is a stochastic sequence  
        such that for all n,X 2 2!

. 



Martin-Löf Tests

A Martin-Löf test is a sequence 
        of open subsets of    that  
are uniformly enumerated by some  
effective procedure and satisfy

2!

for every      . 
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Martin-Löf 
Randomness

       is Martin-Löf random if for 
every Martin-Löf test       ,
X 2 2!
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Martin-Löf random sequences.



Martin-Löf 
Randomness

       is Martin-Löf random if for 
every Martin-Löf test       ,
X 2 2!

. 

     denotes the collection of 
Martin-Löf random sequences.

Sufficient for randomness?



000

00

0 1

01 10 11

001 010 011 100 101 111



000

00

0 1

01 10 11

001 010 011 100 101 111



000

00

0 1

01 10 11

001 010 011 100 101 111



000

00

0 1

01 10 11

001 010 011 100 101 111



MLR for non-uniform 
measures

For any computable measure   we 
can define Martin-Löf randomness 
with respect to  .



MLR for non-uniform 
measures

For any computable measure   we 
can define Martin-Löf randomness 
with respect to  .

We simply replace the condition 

. 
with the condition 



MLR for non-uniform 
measures

For any computable measure   we 
can define Martin-Löf randomness 
with respect to  .

We simply replace the condition 

. 
with the condition 

=   -ML-random sequences



Extraction (1)

Monotonic functions               
can be extended to maps            : 
   

� : 2<! ! 2<!

   is a Turing functional if it is 
induced by a computable, 
monotonic   . 
   



Extraction (2)

Given          ,    is Turing 
reducible to   if there is a Turing 
functional   such that          .   
  

   and    are Turing equivalent if 
there are Turing functionals   and 
such that          and          . 



The main result

Theorem:  Let   be a computable 
measure on   .  For every         
such that    is not computable, there 
is some          such that    and     
are Turing equivalent. 
  

Levin and Kautz independently 
proved:



Some comments (1)
Unlike von Neumann’s trick, the  
Levin/Kautz conversion procedure 
works for any computable measure 
(in fact, it works for any non-
computable measure as well).



Some comments (1)
Unlike von Neumann’s trick, the  
Levin/Kautz conversion procedure 
works for any computable measure 
(in fact, it works for any non-
computable measure as well).

However, the conversion requires 
that we also have access to the 
underlying biased measure.



Some comments (2)
Joint work with Laurent Bienvenu:  

There are biased random sequences 
such that there is no computable 
bound on the number of biased 
input bits needed to guarantee the 
output of n unbiased bits for any 
effective conversion procedure.



Thank you!


