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Introduction

The goal of this talk is to explain the way in which the theory of
algorithmically random sequences can give us insight into certain
limitations of probabilistic computation.

In particular, I will explain certain limitations in terms of two kinds
of effectively closed classes (i.e. Π0

1 classes):

1. negligible Π0
1 classes;

2. deep Π0
1 classes.



A brief history 1

Gödel’s first incompleteness theorem tells us that there is no
effective procedure for producing a consistent completion of Peano
arithmetic (hereafter, PA).

In the early 1970’s, Jockusch and Soare strengthened this result by
proving (essentially) that the probability of producing a consistent
completion of PA via a probabilistic procedure is zero.

In modern terminology, the set of consistent completions of PA is
negligible.



A brief history 2

In the early 2000s, Levin strengthened the Jockusch/Soare result
by proving that the probability of producing some initial segment
of a consistent completion of PA goes to zero quickly.

This property is what we have isolated as the notion of depth.



Outline of today’s talk

1. Some basics of algorithmic randomness

2. Probabilistic Turing computation

3. Negligible Π0
1 classes



1. Some basics of algorithmic randomness



A motivating question

What does it mean for a sequence of 0s and 1s to be random?

Consider the following examples:

(1) 00000000000000000000000000000000000000000000000000

(2) 01010101010101010101010101010101010101010101010101

(3) 10100000110101000110101101000111110000111110100011

(4) 00100100001111110110101010001000100001011010001100

(5) 01001001011010111111110101010011110011111111110010

(3) List names of American states alphabetically: 0 = even # of letters, 1 =

odd # of letters.

(4) First fifty digits of the binary expansion of π.

(5) Fifty digits obtained from random.org (atmospheric noise?).
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A rough definition of algorithmic randomness

Intuitively, a sequence is algorithmically random if it contains no
“effectively definable regularities”.

“effectively definable regularities” ≈ patterns definable in some
computable way

In the absence of such regularities, algorithmically random
sequences are not detected as non-random by any effective test for
randomness.

However, if a sequence contains some “effectively definable
regularity”, there is some effective test for randomness that detects
the sequence as non-random.



Towards a formal definition of algorithmic randomness

There are a number of ways one can formally characterize
algorithmic randomness:

I in terms of betting strategies

I in terms of compressibility

I in terms of effectively definable null sets

⇐

Today I’ll highlight a definition of randomness given in terms of
statistical tests for randomness, where the statistical tests are
effectively generated.



Towards a formal definition of algorithmic randomness

There are a number of ways one can formally characterize
algorithmic randomness:

I in terms of betting strategies

I in terms of compressibility

I in terms of effectively definable null sets ⇐

Today I’ll highlight a definition of randomness given in terms of
statistical tests for randomness, where the statistical tests are
effectively generated.



The statistical definition of randomness (for 2<ω)

Given a finite string σ ∈ 2<ω, we’d like to test whether it is
random.

Null hypothesis: σ is random.

How do we test this hypothesis?

We employ a statistical test T that has a critical region U
corresponding to the significance level α.

If our string is contained in the critical region U, we reject the
hypothesis of randomness at level α (say, α = 0.05 or α = 0.01).



The statistical definition of randomness (for 2ω)

Given an infinite sequence X ∈ 2ω, we’d like to test whether it is
random.

Null hypothesis: X is random.

How do we test this hypothesis?

We test initial segments of X at every level of signficance:
α = 1

2 ,
1
4 ,

1
8 , . . . ,

1
2n , . . .

A test for 2ω is now given by an infinite collection (Ti )i∈ω of tests
for 2<ω, where the critical region Ui of Ti corresponds to the
significance level α = 2−i .
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Formally. . .

A Martin-Löf test is a sequence (Ui )i∈ω of uniformly computably
enumerable sets of strings such that for each i ,

∑

σ∈Ui

2−|σ| ≤ 2−i .

(Think of each Ui as the critical region for a statistical test Ti at significance level
α = 2−i .)

A sequence X ∈ 2ω passes a Martin-Löf test (Ui )i∈ω if there is
some i such that for every k , X �k /∈ Ui .

X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



The measure-theoretic formulation

Given σ ∈ 2<ω,
JσK := {X ∈ 2ω : σ ≺ X}.

These are the basic open sets of 2ω.

The Lebesgue measure on 2ω is defined by

λ(JσK) = 2−|σ|.

Thus we can consider a Martin-Löf test to be a collection (Ui )i∈ω
of uniformly effectively open subsets of 2ω such that

λ(Ui ) ≤ 2−i

for every i .

Moreover, X passes the test (Ui )i∈ω if X /∈ ⋂i Ui .
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Computable measures

We can also define Martin-Löf randomness with respect to any
computable measure on 2ω.

Definition
A measure µ on 2ω is computable if σ 7→ µ(JσK) is computable as
a real-valued function.

In other words, µ is computable if there is a computable function
µ̂ : 2<ω × ω → Q2 such that

|µ(JσK)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.

From now on we will write µ(σ) instead of µ(JσK).



Randomness with respect to a computable measure

Definition
Let µ be a computable measure.

I A µ-Martin-Löf test is a sequence (Ui )i∈ω of uniformly
effectively open subsets of 2ω such that for each i ,

µ(Ui ) ≤ 2−i .

I X ∈ 2ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X
passes every µ-Martin-Löf test.



2. Probabilistic Turing computation



Two approaches to probabilistic computation

The standard definition of a probabilistic Turing machine is a
non-deterministic Turing machine such that its transitions are
chosen according to some probability distribution.

In the case of that this distribution is uniform, one can imagine
that the machine is equipped with a fair coin that determines how
it will transition from state to state.

Alternatively, one can define a probabilistic machine to be an
oracle Turing machine with some algorithmically random sequence
as an oracle.

Key idea: For the purposes of computing a sequence or some
sequence in a fixed collection with positive probability, these two
approaches are equivalent.



Turing functionals

Definition
A Turing functional Φ : 2ω → 2ω is a computably enumerable set
SΦ of pairs of strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ SΦ and
σ � σ′, then τ � τ ′ or τ ′ � τ .
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Turing reducibility

If Φ is a Turing functional and Φ(B)↓ = A, then we say that A is
Turing reducible to B, denoted A ≤T B.

“B computes A”: A ≤T B



One limitation: computing individual sequences

A sequence A ∈ 2ω is computable with positive probability if

λ({X ∈ 2ω : A ≤T X}) > 0.

Theorem (Sacks)

A sequence is computable with positive probability if and only if it
is computable.



Computing members of effectively closed classes

We cannot probabilistically compute any individual sequence that
is not already Turing computable.

However, the situation is more interesting when we consider certain
collections of sequences, namely effectively closed classes, also
known as Π0

1 classes.



Π0
1 classes

I P ⊆ 2ω is a Π0
1 class if its complement is effectively open, i.e.,

the complement is given by a computable enumeration of
basic open sets.

I Equivalently, P ⊆ 2ω is a Π0
1 if it is the collection of infinite

paths through through a computable tree (a subset of 2<ω

that is closed downwards under �).

I We can also define a Π0
1 class to be the collection of infinite

paths through a tree whose complement is computably
enumerable.



Computationally powerful random sequences

It is worth noting that some Martin-Löf random sequences can
compute a member of every Π0

1 class.

I X ∈ 2ω has PA degree if X computes a consistent completion
of Peano arithmetic.

I Every sequence of PA degree computes a member of every Π0
1

class.

I Some Martin-Löf random sequences have PA degree.

Dichotomy: A Martin-Löf random sequence has PA degree if and
only if it computes the halting set K = {e : φe(e)↓}.

However, by Sack’s theorem, only measure zero many Martin-Löf
random sequences have this property.



3. Negligible Π0
1 classes



When probabilistic computation fails

A ⊆ 2ω is negligible if we cannot compute some member of A
with positive probability.

That is,
λ
(
{X ∈ 2ω : (∃Y ∈ A)[Y ≤T X ]}

)
= 0.

We can also provide a useful equivalent formulation of negligibility
in terms of left-c.e. semi-measures.



Left-c.e. semi-measures

A semi-measure ρ : 2<ω → [0, 1] satisfies

I ρ(ε) = 1 and

I ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

A semi-measure ρ is left-c.e. if each value ρ(σ) is the limit of a
non-decreasing computable sequence of rationals, uniformly in σ.



Semi-measures and Turing functionals

For σ ∈ 2<ω, we define Φ−1(σ) := {X ∈ 2ω : ∃n (X �n, σ) ∈ SΦ}.

Proposition (Levin)

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ, there is a Turing functional
Φ such that ρ = λΦ.



A universal semi-measure

Levin proved the existence of a universal left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e.
semi-measure ρ, there is some c ∈ ω such that

ρ(σ) ≤ c ·M(σ)

for every σ ∈ 2<ω.



Defining negligibility in terms of semi-measures

Let M be a universal left-c.e. semi-measure.

Let M be the largest measure such that M ≤ M, which can be
seen as a universal measure.

Proposition

S ⊆ 2ω is negligible if and only if M(S) = 0.

Proof idea: Use the correspondence between Turing functionals
and left-c.e. semi-measures and the fact that M multiplicatively
dominates all left-c.e. semi-measures to show

M(S) = 0 if and only if λ
(⋃

i∈ω
Φ−1
i (S)

)
= 0

for every S ⊆ 2ω (where (Φi )i∈ω is an effective enumeration of all
Turing functionals).



Members of negligible classes

A few observations:

I If a Π0
1 class contains a computable member, it cannot be

negligible.

I Moreover, if a Π0
1 class contains a Martin-Löf random

member, it cannot be negligible, since any Π0
1 class with a

random member must have positive Lebesgue measure.

These two facts are subsumed by the following result:

Proposition (Bienvenu, Porter)

Let P be a negligible Π0
1 class. Then for every computable measure

µ, P contains no X ∈ MLRµ.



Does the converse hold?

Suppose that P is a Π0
1 class such that P ∩MLRµ = ∅ for every

computable measure µ.

Does it follow that P is negligible?

No.

Theorem (Bienvenu, Porter)

There is a non-negligible Π0
1 class P such that P ∩MLRµ = ∅ for

every computable measure µ.
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Computing members of negligible Π0
1 classes

As mentioned above, some Martin-Löf random sequences can
compute a member of every Π0

1 class (but only measure zero many
random sequences have this property).

If we consider a slightly stronger notion of randomness known as
weak 2-randomness, we get a stronger result.

Weak 2-randomness is the notion of randomness that results from
replacing Martin-Löf tests with generalized Martin-Löf tests: a
collection (Ui )i∈ω of uniformly effectively open subsets of 2ω such
that λ(Ui )→ 0.

Theorem (Bienvenu, Porter)

If X ∈ 2ω is weakly 2-random, then X cannot compute any
member of a negligible Π0

1 class.


