The Preservation of Algorithmic Randomness Part 2

Christopher P. Porter

UF Logic Seminar September 4, 2015

Outline

- 1. Review
- 2. The no randomness ex nihilo principle
- 3. Applications of randomness preservation

Part 1: Review

Randomness preservation

Theorem Suppose that Φ is an almost total Turing functional and $X \in MLR$. Then $\Phi(X) \in MLR_{\lambda_{\Phi}}$.

Important facts about Martin-Löf randomness

 For every computable measure μ, there is a universal μ-Martin-Löf test.

 If μ is a computable measure, then no Martin-Löf random sequence is contained in a μ-null Π⁰₁ class.

▶ $X \oplus Y \in MLR$ if and only if $X \in MLR^Y$ and $Y \in MLR$.

Part 2: The no randomness ex nihilo principle

A question from last time

Question

If Φ is an almost total Turing functional and $Y \in MLR_{\lambda_{\Phi}}$, is it the case that $\Phi^{-1}(\{Y\}) \subseteq MLR$?

In general, the answer is NO.

Let Φ be defined by $\Phi(X \oplus Y) = Y$.

Note that for any $Y \in MLR$ we can always some $X \oplus Y \in MLR$ such that $\Phi(X \oplus Y) = Y$.

No randomness ex nihilo

Theorem Suppose that Φ is an almost total Turing functional and $Y \in MLR_{\lambda_{\Phi}}$. Then there is some $X \in MLR$ such that $\Phi(X) = Y$.

Proof

Let $(\mathcal{U}_i)_{i \in \omega}$ be a universal Martin-Löf test with respect to the Lebesgue measure.

Let $\mathcal{K}_n = 2^{\omega} \setminus \mathcal{U}_n$.

Claim: $\mathcal{K}_n \subseteq \operatorname{dom}(\Phi)$ for every $n \in \omega$.

dom $(\Phi) = \bigcap_{i \in \omega} \{X : |\Phi(X)| \ge i\}$, which is Π_2^0 .

Since $\lambda(\mathsf{dom}(\Phi)) = 1$, $2^{\omega} \setminus \mathsf{dom}(\Phi)$ is a Σ_2^0 null set.

Thus, if $X \notin \text{dom}(\Phi)$, then X is contained in a Π_1^0 null set, which implies that $X \notin \text{MLR}$.

Since $\mathcal{K}_n \subseteq MLR$, the claim follows.

Proof (continued)

 $\mathcal{K}_n \subseteq \operatorname{dom}(\Phi)$ implies that $\Phi(\mathcal{K}_n)$ is a Π_1^0 class.

In fact, the collection $(\Phi(\mathcal{K}_n))_{n \in \omega}$ is uniformly Π_1^0 .

Hence, the collection $(2^{\omega} \setminus \Phi(\mathcal{K}_n))_{n \in \omega}$ is uniformly Σ_1^0 .

Then

$$egin{aligned} \lambda_{\Phi}(2^{\omega}\setminus\Phi(\mathcal{K}_n))&=1-\lambda_{\Phi}(\Phi(\mathcal{K}_n))\ &=1-\lambda(\Phi^{-1}(\Phi(\mathcal{K}_n)))\ &\leq 1-\lambda(\mathcal{K}_n)\leq 2^{-n}. \end{aligned}$$

Thus $(2^{\omega} \setminus \Phi(\mathcal{K}_n))_{n \in \omega}$ is a λ_{Φ} -Martin-Löf test.

Proof (continued)

 $(2^{\omega} \setminus \Phi(\mathcal{K}_n))_{n \in \omega}$ is a λ_{Φ} -Martin-Löf test.

Suppose that $Y \in MLR_{\lambda_{\Phi}}$.

Then there is some *n* such that $Y \notin 2^{\omega} \setminus \Phi(\mathcal{K}_n)$

Hence $Y \in \Phi(\mathcal{K}_n)$.

Since $\mathcal{K}_n \subseteq MLR$, it follows that $\Phi^{-1}(Y) \cap MLR \neq \emptyset$.

Question about almost totality

Question

Do we still have randomness preservation if we weaken the condition of almost totality?

In general, the answer is NO.

Theorem (V'yugin)

For every $\epsilon > 0$, there is a Turing functional Φ_{ϵ} with $\lambda(\operatorname{dom}(\Phi_{\epsilon})) > 1 - \epsilon$ such that for every $X \in \operatorname{MLR} \cap \operatorname{dom}(\Phi_{\epsilon})$,

- Φ_ϵ(X) is not random with respect to any computable measure, and
- Φ_ϵ(X) cannot even compute any non-computable sequence that is random with respect to some computable measure.

Part 3: Applications of randomness preservation

Interplay between classes of algorithmically random objects

In recent work with Quinn Culver, we studied the interactions between algorithmically random members of

- G(2^ω), the set of closed subsets of 2^ω,
- $C(2^{\omega})$, the set of continuous functions on 2^{ω} , and
- $\mathcal{P}(2^{\omega})$, the set of probability measures on 2^{ω} .

One way to define an algorithmically random closed subset of 2^{ω} :

A closed set C ⊆ 2^ω is random if it can be coded by an algorithmically random sequence X ∈ 3^ω as shown by the following example.

This definition is due to Barmpalias, Brodhead, Dashti, Cenzer, and Weber.

X = 2021122012...

X = 2021122012...

Robustness of this definition

The resulting definition of randomness is equivalent to one obtained by

- defining Martin-Löf random closed sets in a way that is "native" to G(2^ω), which uses the Fell topology on 2^ω and Choquet capacity (Axon); and
- defining Martin-Löf random closed sets in terms of a certain Galton-Watson process (Diamondstone, Kjos-Hanssen).

Random paths of random closed sets

Theorem (BBDCW)

Every random closed set contains a random sequence, and every random sequence is contained in some random closed set.

Proof sketch:

- ▶ Define a map Φ that sends a random pair (X, Y) ∈ 2^ω × 3^ω to a path Z in the closed set C_Y coded by Y.
- ► Use X as advice to define the path whenever we reach a branching node in C_Y.
- Check: this map induces the Lebesgue measure.
- The result follows from randomness preservation and no randomness ex nihilo.

A follow-up question

Question

Is every member of a random closed set a random sequence? Answer: NO.

- The map that sends a random closed set C ⊆ 2^ω to its leftmost path is a total Turing functional that induces the Bernoulli (2/3, 1/3)-measure.
- By randomness preservation, the leftmost path of a random closed set is random with respect to the Bernoulli (2/3, 1/3)-measure.

Random continuous functions

One way to define an algorithmically random continuous function on 2^{ω} :

A continuous function P ⊆ 2^ω is random if it can be coded by an algorithmically random sequence X ∈ 3^ω as shown by the following example.

This definition is due to Barmpalias, Brodhead, Cenzer, Remmel, and Weber.

$X = 202112201211022001102111211220\dots$

The image of computable point

Proposition (BBCRW)

If $F \in C(2^{\omega})$ is random, then $F(0^{\omega}) \in MLR$.

The result still holds if we replace 0^{ω} with any computable point X.

Proof idea: The map that sends $Z \in 3^{\omega}$ to $F_Z(0^{\omega})$, where F_Z is the function coded by Z, induces the Lebesgue measure.

Computable points in the range?

Question Is 0^{ω} in the range of a random continuous function?

Theorem (BBCRW) For every $Y \in 2^{\omega}$, $\lambda(\{Z : Y \in ran(F_Z)\}) = \frac{3}{4}$.

Theorem (BBCRW)

If F is a random function and $0^{\omega} \in ran(F)$, then $F^{-1}(\{0^{\omega}\})$ is a random closed set.

The result holds if we replace 0^{ω} with any computable sequence.

The converse was left open.

The converse via no randomness ex nihilo

Theorem (Culver-Porter)

For every random closed set $C \subseteq 2^{\omega}$, there is a random continuous function F such that $F^{-1}(\{0^{\omega}\}) = C$.

A nice corollary

Corollary

The collection of random functions is not closed under composition.

We show that for every random F, there is a random G such that $G \circ F$ is not random.

- Given random $F \in C(2^{\omega})$, there is some $R \in MLR$ such that $F(0^{\omega}) = R$.
- ► By the BBCDW result, R is a member of some random closed set P.
- By the previous theorem, there is a random function G such that P = G⁻¹({0^ω}), so that G(R) = 0^ω.
- Since $(G \circ F)(0^{\omega}) = G(R) = 0^{\omega}$, $G \circ F$ cannot be random.

A question about injectivity

If 0^{ω} is in the range of a random function F, then F is not injective.

```
Theorem (Culver-Porter)
```

No random continuous function is injective.

To prove this, we first show:

Theorem (Culver-Porter) If $F \in C(2^{\omega})$ is random, then $\lambda(\operatorname{ran}(F)) > 0$.

Proof sketch

Theorem (Culver-Porter) If $F \in C(2^{\omega})$, then $\lambda(\operatorname{ran}(F)) > 0$.

Proof sketch:

- Given a random $F \in C(2^{\omega})$, suppose that $\lambda(\operatorname{ran}(F)) = 0$.
- Since F is total, ran(F) is $\Pi_1^{0,F}$.
- By the preservation of randomness relative to F, F(X) ∈ MLR^F_{λ_F} for any X ∈ MLR^F.
- λ_F is an algorithmically random measure.
- From work of Hoyrup we have

$$\mathsf{MLR} = \bigcup_{F \text{ random}} \mathsf{MLR}_{\lambda_F}.$$

Proof sketch

Theorem (Culver-Porter) If $F \in C(2^{\omega})$, then $\lambda(\operatorname{ran}(F)) > 0$.

Proof sketch:

- Given a random $F \in C(2^{\omega})$, suppose that $\lambda(\operatorname{ran}(F)) = 0$.
- Since F is total, ran(F) is $\Pi_1^{0,F}$.
- By the preservation of randomness relative to F, F(X) ∈ MLR^F_{λF}.
- λ_F is an algorithmically random measure.
- With some work, one can show

$$\mathsf{MLR}^{F} = \bigcup_{F \text{ random}} \mathsf{MLR}^{F}_{\lambda_{F}}.$$

Thus F(X) ∈ MLR^F, which contradicts the fact that F(X) is contained in a Π₁^{0,F} null class.

Proof of the injectivity theorem

Theorem (Culver-Porter)

No random continuous function is injective.

Proof sketch:

- Given a random F ∈ C(2^ω), since λ(ran(F)) > 0, there is some Z ∈ MLR^F ∩ ran(F).
- ► By relativizing our earlier theorem, F⁻¹({Z}) is an F-random closed set, which is perfect.
- ► Thus *F* is not injective.