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Part 1: Review



Randomness preservation

Theorem
Suppose that Φ is an almost total Turing functional and
X ∈ MLR. Then Φ(X ) ∈ MLRλΦ

.



Important facts about Martin-Löf randomness

I For every computable measure µ, there is a universal
µ-Martin-Löf test.

I If µ is a computable measure, then no Martin-Löf random
sequence is contained in a µ-null Π0

1 class.

I X ⊕ Y ∈ MLR if and only if X ∈ MLRY and Y ∈ MLR.



Part 2: The no randomness ex nihilo principle



A question from last time

Question
If Φ is an almost total Turing functional and Y ∈ MLRλΦ

, is it the
case that Φ−1({Y }) ⊆ MLR?

In general, the answer is NO.

Let Φ be defined by Φ(X ⊕ Y ) = Y .

Note that for any Y ∈ MLR we can always some X ⊕ Y ∈ MLR
such that Φ(X ⊕ Y ) = Y .



No randomness ex nihilo

Theorem
Suppose that Φ is an almost total Turing functional and
Y ∈ MLRλΦ

. Then there is some X ∈ MLR such that Φ(X ) = Y .



Proof

Let (Ui )i∈ω be a universal Martin-Löf test with respect to the
Lebesgue measure.

Let Kn = 2ω \ Un.

Claim: Kn ⊆ dom(Φ) for every n ∈ ω.

dom(Φ) =
⋂

i∈ω{X : |Φ(X )| ≥ i}, which is Π0
2.

Since λ(dom(Φ)) = 1, 2ω \ dom(Φ) is a Σ0
2 null set.

Thus, if X /∈ dom(Φ), then X is contained in a Π0
1 null set, which

implies that X /∈ MLR.

Since Kn ⊆ MLR, the claim follows.



Proof (continued)

Kn ⊆ dom(Φ) implies that Φ(Kn) is a Π0
1 class.

In fact, the collection (Φ(Kn))n∈ω is uniformly Π0
1.

Hence, the collection (2ω \ Φ(Kn))n∈ω is uniformly Σ0
1.

Then

λΦ(2ω \ Φ(Kn)) = 1− λΦ(Φ(Kn))

= 1− λ(Φ−1(Φ(Kn)))

≤ 1− λ(Kn) ≤ 2−n.

Thus (2ω \ Φ(Kn))n∈ω is a λΦ-Martin-Löf test.



Proof (continued)

(2ω \ Φ(Kn))n∈ω is a λΦ-Martin-Löf test.

Suppose that Y ∈ MLRλΦ
.

Then there is some n such that Y /∈ 2ω \ Φ(Kn)

Hence Y ∈ Φ(Kn).

Since Kn ⊆ MLR, it follows that Φ−1(Y ) ∩MLR 6= ∅.



Question about almost totality

Question
Do we still have randomness preservation if we weaken the
condition of almost totality?

In general, the answer is NO.

Theorem (V’yugin)

For every ε > 0, there is a Turing functional Φε with
λ(dom(Φε)) > 1− ε such that for every X ∈ MLR ∩ dom(Φε),

I Φε(X ) is not random with respect to any computable
measure, and

I Φε(X ) cannot even compute any non-computable sequence
that is random with respect to some computable measure.



Part 3: Applications of randomness
preservation



Interplay between classes of algorithmically random objects

In recent work with Quinn Culver, we studied the interactions
between algorithmically random members of

I G(2ω), the set of closed subsets of 2ω,

I C(2ω), the set of continuous functions on 2ω, and

I P(2ω), the set of probability measures on 2ω.



Random closed sets

One way to define an algorithmically random closed subset of 2ω:

I A closed set C ⊆ 2ω is random if it can be coded by an
algorithmically random sequence X ∈ 3ω as shown by the
following example.

This definition is due to Barmpalias, Brodhead, Dashti, Cenzer,
and Weber.
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Robustness of this definition

The resulting definition of randomness is equivalent to one
obtained by

I defining Martin-Löf random closed sets in a way that is
“native” to G(2ω), which uses the Fell topology on 2ω and
Choquet capacity (Axon); and

I defining Martin-Löf random closed sets in terms of a certain
Galton-Watson process (Diamondstone, Kjos-Hanssen).



Random paths of random closed sets

Theorem (BBDCW)

Every random closed set contains a random sequence, and every
random sequence is contained in some random closed set.

Proof sketch:

I Define a map Φ that sends a random pair (X ,Y ) ∈ 2ω × 3ω

to a path Z in the closed set CY coded by Y .

I Use X as advice to define the path whenever we reach a
branching node in CY .

I Check: this map induces the Lebesgue measure.

I The result follows from randomness preservation and no
randomness ex nihilo.



A follow-up question

Question
Is every member of a random closed set a random sequence?

Answer: NO.

I The map that sends a random closed set C ⊆ 2ω to its
leftmost path is a total Turing functional that induces the
Bernoulli (2/3, 1/3)-measure.

I By randomness preservation, the leftmost path of a random
closed set is random with respect to the Bernoulli
(2/3, 1/3)-measure.



Random continuous functions

One way to define an algorithmically random continuous function
on 2ω:

I A continuous function P ⊆ 2ω is random if it can be coded by
an algorithmically random sequence X ∈ 3ω as shown by the
following example.

This definition is due to Barmpalias, Brodhead, Cenzer, Remmel,
and Weber.
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The image of computable point

Proposition (BBCRW)

If F ∈ C(2ω) is random, then F (0ω) ∈ MLR.

The result still holds if we replace 0ω with any computable point X .

Proof idea: The map that sends Z ∈ 3ω to FZ (0ω), where FZ is
the function coded by Z , induces the Lebesgue measure.



Computable points in the range?

Question
Is 0ω in the range of a random continuous function?

Theorem (BBCRW)

For every Y ∈ 2ω, λ({Z : Y ∈ ran(FZ )}) = 3
4 .

Theorem (BBCRW)

If F is a random function and 0ω ∈ ran(F ), then F−1({0ω}) is a
random closed set.

The result holds if we replace 0ω with any computable sequence.

The converse was left open.



The converse via no randomness ex nihilo

Theorem (Culver-Porter)

For every random closed set C ⊆ 2ω, there is a random continuous
function F such that F−1({0ω}) = C.



A nice corollary

Corollary

The collection of random functions is not closed under
composition.

We show that for every random F , there is a random G such that
G ◦ F is not random.

I Given random F ∈ C(2ω), there is some R ∈ MLR such that
F (0ω) = R.

I By the BBCDW result, R is a member of some random closed
set P.

I By the previous theorem, there is a random function G such
that P = G−1({0ω}), so that G (R) = 0ω.

I Since (G ◦ F )(0ω) = G (R) = 0ω, G ◦ F cannot be random.



A question about injectivity

If 0ω is in the range of a random function F , then F is not
injective.

Theorem (Culver-Porter)

No random continuous function is injective.

To prove this, we first show:

Theorem (Culver-Porter)

If F ∈ C(2ω) is random, then λ(ran(F )) > 0.



Proof sketch

Theorem (Culver-Porter)

If F ∈ C(2ω), then λ(ran(F )) > 0.

Proof sketch:

I Given a random F ∈ C(2ω), suppose that λ(ran(F )) = 0.

I Since F is total, ran(F ) is Π0,F
1 .

I By the preservation of randomness relative to F ,
F (X ) ∈ MLRF

λF
for any X ∈ MLRF .

I λF is an algorithmically random measure.

I From work of Hoyrup we have

MLR =
⋃

F random

MLRλF .



Proof sketch

Theorem (Culver-Porter)

If F ∈ C(2ω), then λ(ran(F )) > 0.

Proof sketch:

I Given a random F ∈ C(2ω), suppose that λ(ran(F )) = 0.

I Since F is total, ran(F ) is Π0,F
1 .

I By the preservation of randomness relative to F ,
F (X ) ∈ MLRF

λF
.

I λF is an algorithmically random measure.

I With some work, one can show

MLRF =
⋃

F random

MLRF
λF
.

I Thus F (X ) ∈ MLRF , which contradicts the fact that F (X ) is

contained in a Π0,F
1 null class.



Proof of the injectivity theorem

Theorem (Culver-Porter)

No random continuous function is injective.

Proof sketch:

I Given a random F ∈ C(2ω), since λ(ran(F )) > 0, there is
some Z ∈ MLRF ∩ ran(F ).

I By relativizing our earlier theorem, F−1({Z}) is an F -random
closed set, which is perfect.

I Thus F is not injective.


