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Part 1: Review



Randomness preservation

Theorem
Suppose that ® is an almost total Turing functional and
X € MLR. Then (X) € MLR,,,.



Important facts about Martin-Lof randomness
» For every computable measure p, there is a universal
p-Martin-Lof test.

» If i is a computable measure, then no Martin-Lof random
sequence is contained in a p-null MY class.

» X® Y € MLR if and only if X € MLRY and Y € MLR.



Part 2: The no randomness ex nihilo principle



A question from last time

Question

If ® is an almost total Turing functional and Y € MLR),, is it the
case that ®~1({Y}) C MLR?

In general, the answer is NO.
Let @ be defined by d(X & Y) =Y.

Note that for any Y € MLR we can always some X & Y € MLR
such that (X @ Y) =Y.



No randomness ex nihilo

Theorem
Suppose that ® is an almost total Turing functional and
Y € MLRy,. Then there is some X € MLR such that (X) =Y.



Proof

Let (U;)icw be a universal Martin-Lof test with respect to the
Lebesgue measure.

Let Cp =29\ Up.

Claim: C, C dom(®) for every n € w.

dom(®) = ;e {X 1 |®(X)| > i}, which is M13.
Since A(dom(®)) =1, 2 \ dom(®) is a £J null set.

Thus, if X ¢ dom(®), then X is contained in a I'Icl) null set, which
implies that X ¢ MLR.

Since IC,, € MLR, the claim follows.



Proof (continued)

K, C dom(®) implies that ®(KC,) is a N9 class.
In fact, the collection (®(K,))new is uniformly M.
Hence, the collection (2 \ ®(K,))new is uniformly 9.

Then

Thus (29 \ ®(Kp))new is @ Ap-Martin-Lof test.



Proof (continued)

(29 \ ®(Kpn))new is @ Ap-Martin-Lof test.
Suppose that Y € MLR),.

Then there is some n such that Y ¢ 2« \ ®(/Cp)
Hence Y € ®(ICp).

Since K, C MLR, it follows that ®~1(Y) N MLR # 0.



Question about almost totality

Question

Do we still have randomness preservation if we weaken the
condition of almost totality?

In general, the answer is NO.

Theorem (V'yugin)
For every € > 0, there is a Turing functional ®. with
A(dom(®,)) > 1 — € such that for every X € MLR N dom(®,),

» & (X) is not random with respect to any computable
measure, and

» & (X) cannot even compute any non-computable sequence
that is random with respect to some computable measure.



Part 3: Applications of randomness
preservation



Interplay between classes of algorithmically random objects

In recent work with Quinn Culver, we studied the interactions
between algorithmically random members of

> G(2¥), the set of closed subsets of 2%,
» C(2%), the set of continuous functions on 2¢, and

» P(2¥), the set of probability measures on 2.



Random closed sets

One way to define an algorithmically random closed subset of 2¢:

> A closed set C C 2“ is random if it can be coded by an
algorithmically random sequence X € 3% as shown by the
following example.

This definition is due to Barmpalias, Brodhead, Dashti, Cenzer,
and Weber.
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Robustness of this definition

The resulting definition of randomness is equivalent to one
obtained by

» defining Martin-Lof random closed sets in a way that is
“native” to G(2“), which uses the Fell topology on 2 and
Choquet capacity (Axon); and

» defining Martin-Lof random closed sets in terms of a certain
Galton-Watson process (Diamondstone, Kjos-Hanssen).



Random paths of random closed sets

Theorem (BBDCW)

Every random closed set contains a random sequence, and every
random sequence is contained in some random closed set.

Proof sketch:

» Define a map @ that sends a random pair (X, Y) € 2¢ x 3¢
to a path Z in the closed set Cy coded by Y.

» Use X as advice to define the path whenever we reach a
branching node in Cy.

» Check: this map induces the Lebesgue measure.

» The result follows from randomness preservation and no
randomness ex nihilo.



A follow-up question

Question
Is every member of a random closed set a random sequence?
Answer: NO.

» The map that sends a random closed set C C 2% to its
leftmost path is a total Turing functional that induces the
Bernoulli (2/3,1/3)-measure.

» By randomness preservation, the leftmost path of a random
closed set is random with respect to the Bernoulli
(2/3,1/3)-measure.



Random continuous functions

One way to define an algorithmically random continuous function
on 2%:

» A continuous function P C 2% is random if it can be coded by
an algorithmically random sequence X € 3“ as shown by the
following example.

This definition is due to Barmpalias, Brodhead, Cenzer, Remmel,
and Weber.



X =202112201211022001102111211220...
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The image of computable point

Proposition (BBCRW)
If F € C(2¥) is random, then F(0*) € MLR.

The result still holds if we replace 0% with any computable point X.

Proof idea: The map that sends Z € 3“ to Fz(0%), where F7 is
the function coded by Z, induces the Lebesgue measure.



Computable points in the range?

Question
Is 0 in the range of a random continuous function?

Theorem (BBCRW)
Forevery Y € 29, N({Z : Y € ran(Fz)}) = 3.

Theorem (BBCRW)

If F is a random function and 0 € ran(F), then F~1({0%}) is a
random closed set.

The result holds if we replace 0“ with any computable sequence.

The converse was left open.



The converse via no randomness ex nihilo

Theorem (Culver-Porter)

For every random closed set C C 2%, there is a random continuous
function F such that F~1({0“}) = C.



A nice corollary

Corollary
The collection of random functions is not closed under
composition.

We show that for every random F, there is a random G such that
G o F is not random.

» Given random F € C(2¥), there is some R € MLR such that

F(0¥)=R.
> By the BBCDW result, R is a member of some random closed
set P.

» By the previous theorem, there is a random function G such
that P = G1({0¥}), so that G(R) = 0“.
» Since (G o F)(0¥) = G(R) = 0%, G o F cannot be random.



A question about injectivity

If 0¥ is in the range of a random function F, then F is not
injective.

Theorem (Culver-Porter)

No random continuous function is injective.

To prove this, we first show:

Theorem (Culver-Porter)
If F € C(2¥) is random, then A\(ran(F)) > 0.



Proof sketch

Theorem (Culver-Porter)
If F € C(2¥), then X(ran(F)) > 0.

Proof sketch:
» Given a random F € C(2¥), suppose that A(ran(F)) = 0.
Since F is total, ran(F) is I'I(l)’F.

By the preservation of randomness relative to F,
F(X) € MLRS_ for any X € MLR".

Af is an algorithmically random measure.
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From work of Hoyrup we have

MLR = U MLR), .

F random



Proof sketch

Theorem (Culver-Porter)
If F € C(2¥), then \(ran(F)) > 0.

Proof sketch:
» Given a random F € C(2%), suppose that A(ran(F)) = 0.
» Since F is total, ran(F) is I'I?’F.
» By the preservation of randomness relative to F,
F(X) € MLR},.
> Afg is an algorithmically random measure.
» With some work, one can show

MLRF = ] MLRY,.

F random

» Thus F(X) € MLRF, which contradicts the fact that F(X) is
contained in a I'I(l)’F null class.



Proof of the injectivity theorem

Theorem (Culver-Porter)

No random continuous function is injective.

Proof sketch:

» Given a random F € C(2%), since A(ran(F)) > 0, there is
some Z € MLRF nran(F).

» By relativizing our earlier theorem, F~1({Z}) is an F-random
closed set, which is perfect.

> Thus F is not injective.



