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If A ∈ MLR and Φ is a truth-table functional, if Φ(A) is not
computable, then Φ(A) ≡T B for some B ∈ MLR.

Variants?

I Replace MLR with SR? Yes.

I Replace ≡T with ≡wtt? No.

I Replace MLR with SR and ≡T with ≡wtt? No.
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Why the wtt versions fail

The main idea behind each proof:

I Pick a specific sequence A ∈ MLR that computes a
sufficiently fast-growing function.

I Define a tt-functional Φ in terms of this fast-growing function
such that Φ(A) spreads out the randomness in A.

I Show that Φ(A) has low initial segment complexity.

I Show that sequences that wtt-compute some B ∈ MLR must
have high initial segment complexity.



An interesting consequence

Theorem (Bienvenu, Porter)

Given a Turing degree a containing some A ∈ MLR, there is some
B ∈ a such that

B ∈ MLRcomp ∩ NCRcomp

if and only if a is hyperimmune.

MLRcomp = {X ∈ 2ω : X ∈ MLRµ for some computable µ}.

NCRcomp = {X ∈ 2ω : X /∈ MLRµ for any comp., cont. µ}.

Hereafter, let us refer to sequences in MLRcomp as proper
sequences.



Some questions

These results raise some questions that will occupy us today:

1. How does the initial segment complexity of a proper sequence
relate to its ability to compute fast-growing functions?

2. How does the initial segment complexity of a proper sequence
reflect properties of the underlying measure with respect to
which it is random?

3. How do we reconcile the fact that some proper sequences
have low initial segment complexity with the Levin-Schnorr
theorem, which appears to tell us that the initial segment
complexity of a proper sequence is high?



Outline of the remainder of the talk

1. Basics of initial segment complexity

2. Random sequences with high initial segment complexity

3. Random sequences with low initial segment complexity



1. Basics of Initial Segment Complexity



Kolmogorov complexity

Let U : 2<ω → 2<ω be a universal, prefix-free Turing machine.

For each σ ∈ 2<ω, the prefix-free Kolmogorov complexity of σ is
defined to be

K (σ) := min{|τ | : U(τ)↓ = σ}.



The Levin-Schnorr Theorem

Theorem (Levin, Schnorr)

X ∈ 2ω is Martin-Löf random if and only if

∀n K (X �n) ≥ n − O(1).

More generally, we have the following:

Theorem
Let µ be a computable measure. X ∈ 2ω is µ-Martin-Löf random if
and only if

∀n K (X �n) ≥ − log(µ(X �n))− O(1).
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A priori complexity

Definition

I A semi-measure is a function ρ : 2<ω → [0, 1] satisfying

(i) ρ(ε) = 1 and
(ii) ρ(σ) ≥ ρ(σ0) + ρ(σ1).

I A semi-measure ρ is left-c.e. if ρ is computably approximable
from below.

Fact: There exists a universal left-c.e. semi-measure M. That is,
for every left-c.e. semi-measure ρ there is some c such that

c ·M(σ) ≥ ρ(σ)

for every σ.

We define the a priori complexity of σ ∈ 2<ω to be

KA(σ) := − logM(σ).



Complex and strongly complex sequences

Recall that an order function h : ω → ω is an unbounded,
non-decreasing function.

Definition
Let X ∈ 2ω.

I X is complex if there is a computable order function
h : ω → ω such that

∀n K (X �n) ≥ h(n).

I X is strongly complex if there is a computable order function
g : ω → ω such that

∀n KA(X �n) ≥ g(n).

Proposition

X is complex if and only if X is strongly complex.



2. Random sequences with high initial segment
complexity



What counts as high initial segment complexity?

In what follows, we will consider a proper sequence to have high
initial segment complexity if it is complex.

It is worth noting that not every complex sequence is proper.

For example, there is a complex sequence of minimal Turing
degree, but no proper sequence has minimal Turing degree.



A preliminary observation

Suppose that X is Martin-Löf random with respect to a
computable measure µ.

Then by the Levin-Schnorr theorem,

∀n K (X �n) ≥ − log(µ(X �n))− O(1).

Note that this does not imply that X is complex, since the
function n 7→ − log(µ(X �n)) is in most cases not computable but
only X -computable.



A sufficient condition for complexity

Theorem (Hölzl, Merkle, Porter)

If X ∈ 2ω is Martin-Löf random with respect to a computable,
continuous measure µ, then X is complex.

This follows from the following two results.

Lemma
Let µ be a computable, continuous measure and let X ∈ MLRµ.
Then there is some Martin-Löf random Y ≤tt X.

Lemma
If Y is complex and Y ≤wtt X, then X is complex.
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What about the converse?

The converse of the previous theorem doesn’t hold: as stated
earlier, there are complex sequences that are not proper.

However, we do have a partial converse.

Theorem (Hölzl, Merkle, Porter)

Let X ∈ 2ω be proper. If X is complex, then X ∈ MLRµ for some
computable, continuous measure µ.



A useful lemma

Lemma
Suppose that

I µ is a computable measure,

I X ∈ MLRµ is non-computable,

I P is a Π0
1 class with no computable members, and

I X ∈ P.

Then there is some computable, continuous measure ν such that
X ∈ MLRν .
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Establishing the partial converse

Theorem
Let X ∈ 2ω be proper. If X is complex, then X ∈ MLRµ for some
computable, continuous measure µ.

To prove this theorem, let h be the computable order function that
witnesses that X is complex.

Then we apply the previous lemma to the Π0
1 class

{A ∈ 2ω : (∀n)K (A�n) ≥ h(n)},

which contains X but no computable sequences.
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Connection to semigenericity

Definition
X ∈ 2ω is semigeneric if for every Π0

1 class P containing X
contains some computable member.

Theorem (Hölzl, Merkle, Porter)

Let X ∈ 2ω be proper. The following are equivalent:

1. X /∈ NCRcomp.

2. X is complex.

3. X is not semigeneric.



Avoidability and hyperavoidability

Definition

(i) X ∈ 2ω is avoidable if there is some partial computable
function p, called an avoidance function, such that for every
computable set M and every index e for M, p(e)↓ and
X �p(e) 6= M�p(e).

(ii) Moreover, X is hyperavoidable if X is avoidable with a total
avoidance function.

I Not every avoidable sequence is hyperavoidable.

I X is hyperavoidable if and only if X is complex.

I A non-computable sequence X is avoidable if and only if X is
not semigeneric.



Additional consequences
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A follow-up question

Let µ be a computable, continuous measure.

Since every sequence that is random with respect µ is complex, is
there a single computable order function that witnesses the
complexity of µ-random sequences?

Is there a least such function (up to an additive constant)?



A follow-up result

Definition
Let µ be a continuous measure. Then the granularity function of
µ, denoted gµ, is the order function mapping n to the least ` such
that µ(σ) < 2−n for every σ of length `.

Theorem (Hölzl, Merkle, Porter)

Let µ be a computable, continuous measure and let X ∈ MLRµ.
Then we have

∀n KA(X �n) ≥ g−1
µ (n)− O(1).
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Some facts about the granularity of a computable measure

I If µ is exactly computable, that is, µ is Q2-valued and the
function σ 7→ µ(σ) is a computable function, then gµ is
computable.

I However, there is a computable, continuous measure µ such
that the granularity function gµ of µ is not computable.

I For every computable, continuous measure µ, there is a
computable order function f : ω → ω such that

|f (n)− gµ(n)−1| ≤ O(1).

Such a function f provides as a global computable lower bound for
the initial segment complexity of every µ-random sequence.
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A question about uniformity

Question
If we have a computable, atomic measure µ such that

∀X ∈ 2ω (X ∈ MLRµ \ Atomsµ ⇒ X is complex),

is there a computable, continuous measure ν such that

MLRµ \ Atomsµ ⊆ MLRν?



An answer

Theorem (Hölzl, Merkle, Porter)

There is a computable, atomic measure µ such that

I every X ∈ MLRµ \ Atomsµ is complex but

I there is no computable, continuous measure ν such that
MLRµ \ Atomsµ ⊆ MLRν .







the ith neighborhood



the ith neighborhood

Suppose that �i is an order.



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

X in this neighborhood, we have



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

X in this neighborhood, we have

�i(1)# = n1



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(1)# = n1



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(1)# = n1



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(1)# = n1

�i(2)# = n2



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(1)# = n1

�i(2)# = n2



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(1)# = n1

�i(2)# = n2



the ith neighborhood

�i(1)# = n1

the ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(2)# = n2

�i(3)# = n3



the ith neighborhood

�i(2)# = n2

the ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(1)# = n1

�i(3)# = n3



the ith neighborhoodthe ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(2)# = n2

�i(1)# = n1

�i(3)# = n3



the ith neighborhood �i(4)# = n4the ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(2)# = n2

�i(1)# = n1

�i(3)# = n3



the ith neighborhood �i(4)# = n4the ith neighborhood

We define the measure µ so
that for any complex µ-random

X in this neighborhood, we have

Suppose that �i is an order.

KA(X�n) < ��1
i (n)

for almost every n.

�i(2)# = n2

�i(1)# = n1

�i(3)# = n3



the ith neighborhood

What happens if �i is partial?



the ith neighborhood

What happens if �i is partial?

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



the ith neighborhood

What happens if �i is partial?

�i(1)# = n1

�i(2)# = n2

Suppose, for instance, that �i(3)".



Let JσiK be the i th neighborhood.

One can verify that

I if φi is partial, then JσiK ∩MLRµ ⊆ Atomsµ;

I if φi is total, then JσiK ∩ Atomsµ = ∅ and every
X ∈ MLRµ ∩ JσiK is complex.

Lastly, if there is some computable, continuous ν such that
MLRµ \ Atomsµ ⊆ MLRν , then there is a computable order f = φi
such that for every X ∈ MLRµ \ Atomsµ,

KA(X �n) ≥ f −1(n)− O(1)

for every n, which yields a contradiction.



3. Random sequences with low initial segment
complexity



Notions of non-complexity

Definition

(i) X is infinitely often complex (or i.o. complex) if there is some
computable order function f such that K (X �f (n)) ≥ n for
infinitely many n.

(ii) X is anti-complex if for every computable order function f we
have K (X �f (n)) ≤ n for almost every n.

(iii) X is infinitely often anti-complex (or i.o. anti-complex if for
every computable order function f we have K (X �f (n)) ≤ n
for infinitely every n.

not complex ⇒ i.o. anti-complex
not anti-complex ⇒ i.o. complex



KA-versions of non-complexity

Each of the notions on the previous slide can equivalently be
formulated in terms of a priori complexity (KA).

One potential benefit of working with KA rather than K in this
context is given by the following result, which does not hold for K .

Lemma
X ∈ 2ω is anti-complex if and only if for every computable order f ,
KA(X �n) ≤ f (n) + O(1).



Proper non-complex sequences

By our earlier result, if a proper sequence is not random with
respect to any continuous, computable measure, it cannot be
complex and must be i.o. anti-complex.

We have already seen examples of such sequences:

I The counterexamples to the wtt-versions of Demuth’s
Theorem are proper and non-complex.



I.o. anti-complex proper sequences

In fact, we can recast the theorem from the beginning of the talk:

Theorem (Bienvenu, Porter)

Let a be a random Turing degree. Then a contains an i.o.
anti-complex proper sequence if and only if a is hyperimmune.

With some additional work, this can be slightly improved.

Theorem (Hölzl, Merkle, Porter)

Let a be a random Turing degree. Then a contains an i.o.
anti-complex, i.o. complex proper sequence if and only if a is
hyperimmune.



Anti-complex proper sequences

We have a similar (though not quite optimal) result for
anti-complex proper sequences.

Theorem (Hölzl, Merkle, Porter)

Let a be a random degree.

(i) If there is some Martin-Löf random A ∈ a and a function
f ≤wtt A that dominates all computable functions, then there
is some anti-complex, proper sequence B ≡T A.

(ii) If a contains an anti-complex, proper sequence, then a is high.

Question
If a is high and random, does a contain an anti-complex, proper
sequence? That is, can we replace the ≤wtt in (i) with ≤T ?



Thank you!


