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Motivation

In computability theory, one major concern is to determine 
which problems are solvable by Turing machines and which 
ones are not.

✤ For a given set of natural numbers S, is there an effective 
procedure for determining membership in S?

If a given problem is shown to be effectively unsolvable, we can 
further ask:  Just how unsolvable is it?

In fact, there are a number of hierarchies for classifying the 
difficulty of solving various problems.



An alternative approach

In these investigations of the solvability of problems, the 
computations are carried out by Turing machines (often equipped 
with an oracle).

What picture would emerge if instead we were to work with some 
model of probabilistic Turing machine?

In this talk, I will discuss recent work with Laurent Bienvenu and 
Antoine Taveneaux on two kinds of effectively closed classes whose 
members are difficult to compute probabilistically, namely negligible 
classes and deep classes.



Turing computation

As a first step towards describing the model of probabilistic 
computation under consideration, we need to discuss Turing 
functionals.

Here we view a Turing functional as an effective map from       to
      .  

2!

2!

More precisely, a Turing functional is given in terms of a computably
enumerable set of pairs of strings satisfying a certain consistency 
condition (as illustrated by the next set of slides).



�!
�



�!
�



�!
�



�!
�



�!
�



�!
�



�!
�



�!
�

..

.



�!
�

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.
..
.



�!
�

..

.
..
.

..

.



�!
�

..

.
..
.

..

.
..
.



�!
�

..

.
..
.

..

.
..
.

X



�!
�

..

.
..
.

..

.
..
.

ZX



�!
�

..

.
..
.

..

.
..
.

ZX

“X computes Z”



The idea behind algorithmic 
randomness

There are a number of ways to motivate the idea behind algorithmic 
randomness.  For instance:

These two ideas can be made precise in such a way that the resulting 
definitions of algorithmic randomness are equivalent.

✤ A sequence is algorithmically random if its initial 
segments cannot be compressed.

✤ A sequence is algorithmically random if it satisfies 
every effective law of probability.



Martin-Löf randomness

A Martin-Löf test is a sequence                of uniformly effectively 
open subsets of       such that for each            ,

A  sequence                passes a Martin-Löf test                if

(Ui)i2!

2! i 2 !

�(Ui)  2�i.

(Ui)i2!X 2 2!

X /2
\

i2!

Ui.

A  sequence is Martin-Löf random if it passes every Martin-Löf test.
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Probabilistic computation, 1 

As computability theorists, we don’t want our definition of 
probabilistic computation to stray too far from Turing’s original 
model of oracle computation.

One model that we could use is given by a Turing machine with an 
oracle full of randomly generated bits (for instance, produced by the 
repeated tosses of a fair coin).

For our purposes, we care about what can be computed with positive 
probability, and thus we can equivalently assume that the oracle tape 
of our machines are equipped with some Martin-Löf random oracle.



               is negligible if we cannot compute a member of     via a 
random oracle with positive probability.         
C ✓ 2!

C

Probabilistic computation, 2 

C ✓ 2!Let               . 

C
“We can compute a member 

of     via a random oracle with 
positive probability.”         

“The Lebesgue measure of the 
oracles that compute some 
member of     is positive.”

C

means



What can we compute with a 
random oracle?

Sack’s Theorem:  If                 can be computed by a random oracle 
with positive probability, then X is computable. 

Further, some member of every non-empty effectively open class is 
computable by a random oracle with positive probability.

Things become more interesting when we consider effectively 
closed classes.

X 2 2!

✤ That is, the only non-negligible singletons are given by 
computable sequences.

✤ That is, the only negligible effectively open class is the 
empty one.



Effectively closed classes

We can define an effectively closed class of       (also known as a        
class) in one of several ways.

Equivalently,                 is a        class if it is the collection of infinite 
paths through through a computable tree (a subset of         that is 
closed downwards under     ).

First,                 is a        class if its complement is effectively open, i.e., 
the complement is given by a computable enumeration of basic open 
sets.

P ✓ 2!

2!

P ✓ 2!

2<!

�

We can also define a        class to be the collection of infinite paths 
through a tree whose complement is computably enumerable.

⇧0
1

⇧0
1

⇧0
1

⇧0
1



A few preliminary results

✤ Every        class with a computable member is non-
negligible. 

⇧0
1

✤ Every        class with a Martin-Löf random member is 
non-negligible. 

⇧0
1

✤ Every        class with a member that is Martin-Löf 
random with respect to some computable probability 
measure is non-negligible. 

⇧0
1



An example of negligibility

The existence of a negligible        class was established over 40 
years ago.

⇧0
1

Jockusch and Soare proved that the collection of consistent 
completions of Peano arithmetic is negligible.

In fact, completions of Peano arithmetic satisfy an even stronger 
property that we call “depth”.



Deep      classes⇧0
1

Whereas a       class is negligible if we cannot compute a member via 
a random oracle with positive probability, a        class is deep if we 
cannot compute an initial segment of a member with high probability.

⇧0
1

⇧0
1

In particular, if we consider this probability level by level, it goes to 
zero quickly, i.e., it is bounded by a computable function.
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One key feature of deep classes

In the definition of a deep        class, we make use of the fact that the 
members of a        class are paths through a co-c.e. tree.

⇧0
1

⇧0
1

That is, we look at the probability of computing some member of this 
co-c.e. tree, level by level.

Why?

Theorem (BPT):  There is no computable tree T that satisfies the 
definition of depth.



Negligiblity vs. depth

It is not hard to see that every deep class is negligible.

Does the converse hold?



Negligiblity vs. depth

Does the converse hold?

No.
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Negligiblity vs. depth

Theorem (BPT):  There is a negligible        class that is not deep. ⇧0
1

Does the converse hold?

No.

It is not hard to see that every deep class is negligible.



Some facts about deep classes

Theorem (BPT):  Any Martin-Löf random sequence that computes a 
member of a deep       class can already compute the halting set.⇧0

1

The collection of consistent completions of PA form a deep class 
(Levin).

We’ve identified a number of other deep classes that naturally occur 
in computability theory (shift-complex sequences, compression 
functions, DNCh functions for fast-growing functions h).

Further, we’ve established the level of randomness at which 
computing members of deep classes becomes impossible:



Thank you!


