
Joint Mathematics Meetings, Special Session On Logic And Probability January 15, 2014

Randomness, Probability,
and Computation
Christopher Porter, LIAFA, Université Paris 7

0

1

0 0 0 0 01 1 1 1 1 1

1 1 1 1 1 00 0 0

0 1 0 101 1 0 101 10 0 1 01 1 1 01

Motivation

In computability theory, one major concern is to determine
which problems are solvable by Turing machines and which
ones are not.

✤ For a given set of natural numbers S, is there an effective
procedure for determining membership in S?

If a given problem is shown to be effectively unsolvable, we can
further ask: Just how unsolvable is it?

In fact, there are a number of hierarchies for classifying the
difficulty of solving various problems.

An alternative approach

In these investigations of the solvability of problems, the
computations are carried out by Turing machines (often equipped
with an oracle).

What picture would emerge if instead we were to work with some
model of probabilistic Turing machine?

In this talk, I will discuss recent work with Laurent Bienvenu and
Antoine Taveneaux on two kinds of effectively closed classes whose
members are difficult to compute probabilistically, namely negligible
classes and deep classes.

Turing computation

As a first step towards describing the model of probabilistic
computation under consideration, we need to discuss Turing
functionals.

Here we view a Turing functional as an effective map from to
 .

2!

2!

More precisely, a Turing functional is given in terms of a computably
enumerable set of pairs of strings satisfying a certain consistency
condition (as illustrated by the next set of slides).

�!
�

�!
�

�!
�

�!
�

�!
�

�!
�

�!
�

�!
�

..

.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

�!
�

..

.
..
.

..

.

�!
�

..

.
..
.

..

.
..
.

�!
�

..

.
..
.

..

.
..
.

X

�!
�

..

.
..
.

..

.
..
.

ZX

�!
�

..

.
..
.

..

.
..
.

ZX

“X computes Z”

The idea behind algorithmic
randomness

There are a number of ways to motivate the idea behind algorithmic
randomness. For instance:

These two ideas can be made precise in such a way that the resulting
definitions of algorithmic randomness are equivalent.

✤ A sequence is algorithmically random if its initial
segments cannot be compressed.

✤ A sequence is algorithmically random if it satisfies
every effective law of probability.

Martin-Löf randomness

A Martin-Löf test is a sequence of uniformly effectively
open subsets of such that for each ,

A sequence passes a Martin-Löf test if

(Ui)i2!

2! i 2 !

�(Ui) 2�i.

(Ui)i2!X 2 2!

X /2
\

i2!

Ui.

A sequence is Martin-Löf random if it passes every Martin-Löf test.

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

An abstract example

U1 U2 U3

X

�2U1

2�|�| 1

2

An abstract example

U1 U2 U3

X

�2U1

2�|�| 1

2

X

�2U2

2�|�| 1

4

An abstract example

U1 U2 U3

X

�2U1

2�|�| 1

2

X

�2U2

2�|�| 1

4

X

�2U3

2�|�| 1

8

An abstract example

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

U1

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

U1

000

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

U1

U2

000

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

U1

U2

000

...
...

...
...

...
...

000

00

0 1

01 10 11

001 010 011 100 101 110 111

An concrete example

U1

U2

U3

Probabilistic computation, 1

As computability theorists, we don’t want our definition of
probabilistic computation to stray too far from Turing’s original
model of oracle computation.

One model that we could use is given by a Turing machine with an
oracle full of randomly generated bits (for instance, produced by the
repeated tosses of a fair coin).

For our purposes, we care about what can be computed with positive
probability, and thus we can equivalently assume that the oracle tape
of our machines are equipped with some Martin-Löf random oracle.

 is negligible if we cannot compute a member of via a
random oracle with positive probability.
C ✓ 2!

C

Probabilistic computation, 2

C ✓ 2!Let .

C
“We can compute a member

of via a random oracle with
positive probability.”

“The Lebesgue measure of the
oracles that compute some
member of is positive.”

C

means

What can we compute with a
random oracle?

Sack’s Theorem: If can be computed by a random oracle
with positive probability, then X is computable.

Further, some member of every non-empty effectively open class is
computable by a random oracle with positive probability.

Things become more interesting when we consider effectively
closed classes.

X 2 2!

✤ That is, the only non-negligible singletons are given by
computable sequences.

✤ That is, the only negligible effectively open class is the
empty one.

Effectively closed classes

We can define an effectively closed class of (also known as a
class) in one of several ways.

Equivalently, is a class if it is the collection of infinite
paths through through a computable tree (a subset of that is
closed downwards under).

First, is a class if its complement is effectively open, i.e.,
the complement is given by a computable enumeration of basic open
sets.

P ✓ 2!

2!

P ✓ 2!

2<!

�

We can also define a class to be the collection of infinite paths
through a tree whose complement is computably enumerable.

⇧0
1

⇧0
1

⇧0
1

⇧0
1

A few preliminary results

✤ Every class with a computable member is non-
negligible.

⇧0
1

✤ Every class with a Martin-Löf random member is
non-negligible.

⇧0
1

✤ Every class with a member that is Martin-Löf
random with respect to some computable probability
measure is non-negligible.

⇧0
1

An example of negligibility

The existence of a negligible class was established over 40
years ago.

⇧0
1

Jockusch and Soare proved that the collection of consistent
completions of Peano arithmetic is negligible.

In fact, completions of Peano arithmetic satisfy an even stronger
property that we call “depth”.

Deep classes⇧0
1

Whereas a class is negligible if we cannot compute a member via
a random oracle with positive probability, a class is deep if we
cannot compute an initial segment of a member with high probability.

⇧0
1

⇧0
1

In particular, if we consider this probability level by level, it goes to
zero quickly, i.e., it is bounded by a computable function.

The Picture

Length Probability

The Picture

Length Probability

1

The Picture

Length Probability

1 2�h(1)

The Picture

1
2

Length Probability

 2�h(1)

The Picture

1
2

Length Probability

 2�h(1)

 2�h(2)

The Picture

1

Length Probability

2
3

 2�h(1)

 2�h(2)

The Picture

1

Length Probability

2
3

 2�h(1)

 2�h(2)

 2�h(3)

The Picture

1

Length Probability

2
3
4

 2�h(1)

 2�h(2)

 2�h(3)

The Picture

1

Length Probability

2
3
4

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

The Picture

1

Length Probability

2
3
4
5

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

The Picture

1

Length Probability

2
3
4
5

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

The Picture

1

Length Probability

2
3
4
5
6

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

The Picture

1

Length Probability

2
3
4
5
6

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

The Picture

1

Length Probability

2
3
4
5
6
7

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

The Picture

1

Length Probability

2
3
4
5
6
7

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

The Picture

1

Length Probability

2
3
4
5
6
7
8

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)

The Picture

1

Length Probability

2
3
4
5
6
7
8

 2�h(1)

 2�h(2)

 2�h(3)

 2�h(4)

 2�h(5)

 2�h(6)

 2�h(7)
 2�h(8)

One key feature of deep classes

In the definition of a deep class, we make use of the fact that the
members of a class are paths through a co-c.e. tree.

⇧0
1

⇧0
1

That is, we look at the probability of computing some member of this
co-c.e. tree, level by level.

Why?

Theorem (BPT): There is no computable tree T that satisfies the
definition of depth.

Negligiblity vs. depth

It is not hard to see that every deep class is negligible.

Does the converse hold?

Negligiblity vs. depth

Does the converse hold?

No.

It is not hard to see that every deep class is negligible.

Negligiblity vs. depth

Theorem (BPT): There is a negligible class that is not deep. ⇧0
1

Does the converse hold?

No.

It is not hard to see that every deep class is negligible.

Some facts about deep classes

Theorem (BPT): Any Martin-Löf random sequence that computes a
member of a deep class can already compute the halting set.⇧0

1

The collection of consistent completions of PA form a deep class
(Levin).

We’ve identified a number of other deep classes that naturally occur
in computability theory (shift-complex sequences, compression
functions, DNCh functions for fast-growing functions h).

Further, we’ve established the level of randomness at which
computing members of deep classes becomes impossible:

Thank you!

